首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
流化床常压空气部分气化和半焦燃烧的试验研究   总被引:1,自引:1,他引:0  
为进行煤的多联产方案研究,在1 MW循环流化床热电气多联产试验装置上,选取兖州煤、大同煤为试验煤种进行了部分空气气化和半焦燃烧试验。试验结果表明,空气部分气化方案得到的煤气热值较低,为3~5 MJ/m3,在气化炉中的碳转化率为40%~70%,剩余半焦被送入循环流化床反应器中燃烧,该系统的总体转化效率为90%左右。气化炉床层温度对气化炉碳转化率影响较大,随着温度升高其碳转化率明显提高,而燃烧炉燃烧效率呈下降趋势。石灰石的加入除了对焦油的裂解有一定的促进作用外,还具有脱除硫化氢作用,当[Ca]/[S]为3时,脱硫效率为90%。气化炉的给煤量、燃烧炉运行温度随气化炉鼓风温度提高而增加。  相似文献   

2.
煤炭空气部分气化联合循环发电技术采用循环流化床反应器作为气化炉和燃烧炉,煤由给料装置送入气化炉中与空气发生反应,产生燃气然后送入燃气轮机中发电;反应剩余的半焦则送入循环流化床燃烧炉中燃烧发电。本文采用甘肃华亭煤为设计煤种,利用Aspen Plus软件对煤炭空气部分气化联合循环发电技术进行模拟研究,得出了空气煤比、碳转化率对气化温度、燃气组分、燃气热值、气化效率、发电效率等因素的影响。结果表明:随着空气煤比的增大,气化温度升高,燃气热值、发电效率及气化效率降低;随着碳转化率增大,燃气的热值提高,气化效率及发电效率均增加;系统发电效率随着碳转化率增加而增加,然而当碳转化率大于80%时,发电效率的增加幅度大幅减小,因此将碳转化率选为80%较为合适,此时的发电效率约为57%,这相较于现有的煤粉燃烧发电系统有极大的提高。  相似文献   

3.
提高水煤浆气化碳转化率和冷煤气效率,是强化气化过程的必然结果。利用FLUENT软件平台,该文用数值模拟方法模拟了水煤浆气化过程中水煤浆煤、水配比和氧、碳原子比对气化过程和出口煤气成分的影响;尤其是研究了利用添加液态CO2的方法提高水煤浆煤、水配比,对提高气化炉碳转化率和冷煤气效率的影响。模拟结果显示:随着液态CO2浓度的不断升高,煤气成分中CO大幅上升,H2略有降低,CO2浓度升高;气化炉的碳转化率和冷煤气效率都有较大幅度提高,分别达到最大值98.58%、76.74%,比原工况分别提高了3.7%、6.1%;气化炉温度先降低后变化趋缓。结果证明添加液态CO2后强化了气化炉内的二次反应,提高了焦炭燃烧速率。  相似文献   

4.
铁法链式反应器煤基氢电联产系统性能模拟   总被引:2,自引:1,他引:2  
FeO/Fe3O4作载氧体,以链式反应器构建煤气化氢电联产系统,用ASPEN PLUS软件对系统的性能进行了模拟。研究链式反应器温度、水蒸汽转化率对系统性能的影响,并对系统流程进行了火用分析。结果表明,系统生产的H2的纯度高,可达99.9%,CO2 近零排放; 当水蒸汽反应器在815℃、水蒸汽转化率为37%时,系统的净效率达到58.06%;水蒸汽转化率对系统性能影响较大,由28%增加到41%时,系统的效率由53.17%增加到58.33%;系统的火用损主要集中在气化炉和余热锅炉部分。  相似文献   

5.
整体煤气化联合循环(integrated gasification combined cycle,IGCC)发电系统中气化岛包含气化单元和净化单元,气化单元由气化炉、废热锅炉和空分分离装置组成。合成气化学能和冷煤气效率直接影响着整个IGCC电站系统效率,是衡量合成气品质和气化炉性能的关键参数。采用Thermoflex软件对200 MW级IGCC气化单元进行模拟计算。着重研究水煤浆浓度、氧碳摩尔比、气化温度、气化压力对气化单元性能的影响。计算结果表明:在较低气化温度下增加水煤浆浓度有利于冷煤气效率和合成气化学能的增加。调节氧碳摩尔比对调节气化炉温度水平具有良好的灵敏性和有效性。另外,氧碳摩尔比还能够起到分配煤中化学能的作用,即调节煤中化学能在合成气化学能和物理显热之间的分配比例。采用低温、加压方式,有利于提高合成气化学能。  相似文献   

6.
以新型CO2回收式煤气化系统为研究对象,建立了加压流化床煤气化动态数学模型,包括颗粒模型、气相模型、气泡模型和焓平衡模型,探讨了给煤速率、氧碳比以及水蒸气比等操作参数对碳转化率、产气量以及冷煤气效率的影响,由此确定了煤投入量的最佳操作范围。计算结果表明:在采用CO2回收循环系统下可获得70%以上的(CO+H2)合成气;CO2气氛下的气化能力比在空气气氛下减少了约2%;反应压力为1.5 MPa时,给煤速率的最佳操作范围为1.3~1.8 kg/(m2·s);氧碳摩尔比为0.5时冷煤气效率可达76%;气化温度与氧碳比基本呈线性关系,通过对氧碳比的控制可有效地调节气化温度;随着水蒸气比的增加,冷煤气效率会出现最大值,气体热值会逐渐增大;在气化温度为1073~1273 K时,CO2气氛下反应的操作范围比空气气氛下的范围大。  相似文献   

7.
二段式空气气化炉由于可以节省空分装置,减少初期投资和降低消耗功率,因而受到了广泛关注。文章建立了两段式空气气化炉的计算模型,研究了入口氧碳比、汽煤比、气化压力对出口粗煤气成分的影响,分析了两段式空气气化炉的特点,对该种气化炉的操作参数进行了优化。  相似文献   

8.
用简化PDF模型对气化炉运行特性的分析   总被引:5,自引:0,他引:5  
应用CFD(computational fluid dynamics) 软件FLUENT对某化肥厂Texaco水煤浆气化炉进行三维数值模拟,计算采用贴体网格,简化PDF方法模拟湍流燃烧,编制UDF分别考虑了焦炭同O2、H2O、CO2和H2的反应。计算考察了改变水煤浆浓度及[C]/[O]原子比等重要参数对气化炉运行特性的影响。焦炭仅同氧气反应时的转化率为32%, 而总转化率为95%,说明焦炭同H2O、CO2和H2的异相反应在气化过程中占重要作用;煤粉粒度越大,碳转化率越低,粒度为175 mm时,碳转化率仅为72%;气化温度是影响气化反应的决定性因素。随着水煤浆浓度的增高,CO摩尔分数明显升高、H2O和CO2摩尔分数明显降低,H2摩尔分数略有降低。随着[O]/[C]原子比的增加,H2摩尔分数明显降低,CO和CO2摩尔分数几本不变。出口温度和碳转化率随煤浆浓度和[O]/[C]原子比的增加而增高。冷煤气效率随煤浆浓度的提高而提高,随[O]/[C]比的增加会在1~1.05之间出现峰值。  相似文献   

9.
三压再热蒸汽系统的热力参数优化分析   总被引:1,自引:0,他引:1  
赵峰  沈邱农 《发电设备》2010,24(5):319-325,333
针对燃气-蒸汽联合循环中三压再热汽水系统的热力参数对汽轮机功率及循环效率的影响,建立了汽水系统的计算模型,以汽轮机功率和蒸汽流量为目标函数,采用Matlab计算软件对系统热力参数进行计算。结果表明,再热蒸汽压力和中、低压蒸汽压力直接影响着汽轮机功率的大小。  相似文献   

10.
新型煤气化燃烧集成制氢系统的热力学研究   总被引:6,自引:10,他引:6  
对于以CaO为CO2接受体的无氧气化法为基础的新型煤气化燃烧集成制氢系统进行了化学热力学分析,以化学热力学平衡为基础研究了温度、压力、煤种、H2O/C比对制氢过程的影响。计算结果表明CaO的加入在一定条件下可以大大提高H2产量,气化过程的温度过高会引起CaCO3的重新分解,而温度过低则降低H2产量,合适的温度为850℃左右,合适的压力范围为2-3MPa。以纯碳为原料、气化炉中碳转化率为69%时,半焦燃烧的热量可以满足CaCO3的分解。当H2O/C在3.0-3.5之间时,气化效率达到79%左右,制氢效率为65%左右,产品气中H2含量为85%左右。与烟煤、褐煤相比,无烟煤为原料时产品气中H2含量最高,接近于以纯碳为原料的工况,而褐煤由于挥发份中CH4的含量多导致H2含量降低。  相似文献   

11.
串行流化床生物质气化制取合成气试验研究   总被引:6,自引:0,他引:6  
串行流化床气化是一种崭新的气化技术,可将气化和燃烧过程分隔开,气化反应器和燃烧反应器之间依靠惰性固体载热体进行热量传递。以水蒸气为气化介质,在小型串行流化床试验装置上进行生物质气化制取合成气的试验研究,探讨气化反应器温度T、水蒸气与生物质比率S/B对气化结果的影响。试验结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的提高,合成气中j(H2)/j(CO)减小,合成气产率增加,热值降低,总碳转换率先升高而后保持不变。随着S/B的增大,合成气产率和总碳转换率均先升高而后降低,S/B的最佳值为1.4。在试验阶段获得的最高合成气产率为1.87 m3/kg,合成气热值为13.20 MJ/m3,总碳转化率为91%。  相似文献   

12.
对MW级谷壳气化发电的操作特性进行了研究。主要考查了流化速度及当量比(ER)对气化炉运行温度、压降、气体成分及其热值、气体的产率、谷壳中碳转化率的影响。实验结果显示:流化速度为0.25~0.32 m/s,ER为0.25~0.35时,气化炉运行温度稳定,产生的可燃气体成份的体积百分含量为H2:3.25%~4%, CO:14.43%~20%,CH4:1.84%~3%,C2Hm:0.98%~2.14%;气体的热值:3.1~5.03 MJ/Nm3,气体的产率为1.3~1.98 Nm3/kg,谷壳中碳的转化率为56%~82%。当操作条件为:流化速度0.25 m/s、ER=0.25时,所产生出的燃气对燃气发电机组的运行最佳。  相似文献   

13.
高温气化剂加压喷动流化床煤气化试验研究   总被引:6,自引:1,他引:6  
在热输入0.1MW的小型加压喷动流化床试验装置上进行了高温气化剂煤气化特性的试验研究,考察了气化温度、压力、空气系数和汽煤质量比等工艺参数对高温空气/蒸汽作为气化介质的煤气化行为的影响.试验结果表明,在所研究的工艺参数中,气化温度对高温空气煤气化特性影响最为显著.压力对气化性能的影响主要体现在改善流化床气化炉床内流化质量.空气系数及汽煤比的影响从本质上看是通过改变气化反应温度来实现的,对于一个特定的流化床气化工艺,空气系数及汽煤比均存在一个适宜的操作区域.  相似文献   

14.
煤气化是煤化工的先导技术,粉煤气化以其高碳转化率和高冷煤气效率日益得到重视。通过物理建模,建立起粉煤气化的数学模型,运用欧拉-拉格朗日方法分析气化炉冷态流场分布特性;运用非预混方法分析气化炉热态运行条件下温度分布和煤气成分变化规律。通过对模型的数值分析,冷态条件下颗粒相和连续相之间的最大速度比约为0.828;煤粉颗粒在旋转力矩作用下螺旋上升,颗粒在炉内停留时间增大;热态条件下湍流火焰中心存在"黑区",火焰外锥面对应氧浓度梯度变化最大的表面,燃烧剧烈、温度较高。热态条件下数值模拟得到生成气成分分布和气化炉设计工况基本吻合。  相似文献   

15.
整体煤气化联合循环(IGCC)发电系统性能分析   总被引:1,自引:0,他引:1  
余廷芳  蔡宁生 《热力发电》2006,35(9):1-3,23
介绍不同型式的整体煤气化联合循环(IGCC)发电系统。对采用空气气化的IGCC系统进行了概念设计,并对4种采用空气气化型式的IGCC发电系统进行了计算和分析,研究结果表明(1)IGCC燃煤发电系统有较大的综合优势;(2)在相同设计参数下,IGCC系统采用温度较低的流化床气化炉或采用温度较高的气流床气化炉各有优缺点,对配置低温湿法粗煤气净化系统的IGCC系统,建议采用流化床气化炉;(3)在进行IGCC设计时,燃气轮机入口温度应尽量取高值,对应此温度存在一最佳压比值;(4)IGCC系统供电效率比常规电站高5~7个百分点。  相似文献   

16.
高效能两段组合式煤气化工艺能有效利用高温煤气显热,以提高现有气流床气化技术的冷煤气效率。在两段组合式煤气化炉热态实验装置上,考察了二段床层不同粒径范围煤焦的气化反应性,实验得出,最优粒径范围为10~15mm。该粒径范围下,二氧化碳累积转化率达10%,其反应速率在反应30 min时达到峰值,床层平均温降最高,达到402.4℃。文中还研究了钾盐添加量对二段煤焦气化反应性能的影响,钾的添加量应大于5%才能明显体现其良好催化效果。碳酸钾用量在8%下的催化效果显著,二段出口有效气体浓度和碳转化率等参数提高明显,二氧化碳累积转化率为19%。此工艺有效实现CO2减排和资源化利用,环境效益良好。  相似文献   

17.
许世森  程健 《中国电力》2007,40(3):9-13
氢能是一种高效洁净、理想的、极有前途的二次能源。“绿色煤电”计划将建立2MW的氢能试验系统,进行煤气变换制氢、氢能发电、CO_2利用的试验研究。介绍2MW氢能发电试验系统的设计方案:煤气化工艺采用西安热工院的两段式干煤粉加压气化技术,CO变换工艺采用中温耐硫变换工艺,脱碳工艺经比较采用变压吸附工艺,提纯的氢气用于高温燃料电池发电和氢燃气轮机的燃烧试验,CO_2作为商品销售。煤气变换提纯后CO_2体积分数小于0.2%,H_2体积分数大于99%,燃料电池发电效率达60%以上,系统CO_2达到零排放。煤制氢及氢能利用技术具有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号