首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Walking with the knee joint locked increases the amplitude of pelvic tilt and results in an unnatural gait. This paper introduces a powered gait orthosis with a moveable knee joint designed to improve the gait speed of patients with spinal cord injury (SCI). The unlockable knee joint powered gait orthosis (UKJ-PGO) uses a gas spring cylinder and a solenoid locking device to enable flexion of the joint, while the rigidity of the hip-joint device is enhanced using air muscles. A gait analysis was conducted to evaluate the performance of the UKJ-PGO, and the kinematic parameters obtained were compared with those of a standard PGO. In the gait of SCI patients using the UKJ-PGO, the new knee-joint device enabled flexion during the swing phase and showed a decrease in pelvic tilt compared with the standard PGO gait. As greater flexion was possible at the knee joint, the duration of the stance phase substantially decreased to near to the normal value, and the duration of the swing phase increased accordingly. In addition, the gait using the UKJ-PGO was faster than that with the standard PGO.  相似文献   

2.
The question addressed in this study was whether high-flexion total knee arthroplasty (TKA) designs improve the mechanical behaviour of TKAs in high flexion and whether they maintain the mechanical performance of conventional TKAs at normal flexion angles. A finite element study was performed in which the mechanical behaviour of the conventional Sigma RP and the new high-flexion Sigma RP-F were compared, during a dynamic simulation of a high-flexion squatting activity. Forces, stresses, and contact positions were calculated during different stages of the simulations. In general, higher stresses were found with larger flexion angles for both designs. Mechanical parameters were similar in normal flexion. In high flexion, lower stress and deformation values were found for the high-flexion Sigma RP-F, except for the contact stress at the post of the insert. This study confirms that a high-flexion design can improve mechanical behaviour at high-flexion without changing the performance in normal flexion. Hence, although a high-flexion TKA may show a similar or better performance in comparison with a conventional TKA, high-flexion activities still cause an increase in the implant stress levels. Therefore, the patient's demand for large flexion angles may reduce the longevity of TKA implants.  相似文献   

3.
可逆约束系统参数匹配优化研究   总被引:1,自引:0,他引:1  
针对可逆约束系统中可逆预紧式安全带与安全气囊优化匹配的问题,建立某车型驾驶员侧约束系统仿真模型,分别对碰撞前自动紧急制动作用下乘员动态响应,以及碰撞中乘员损伤指标进行验证分析。将试验设计,Kriging代理模型以及第二代多目标遗传算法相结合,以可逆约束系统6个关键参数为输入变量,以乘员头、胸、颈、大腿的损伤值为优化目标,开展多目标优化研究,并利用加权损伤指标(Weighted injury criteria,WIC)评价最优匹配方案。结果表明:与优化前相比较,优化后的约束系统能够有效降低乘员损伤值。当碰撞初速度为56 km/h时,最优匹配方案使胸部、颈部、大腿损伤值分别降低6.61%、28.99%、16.12%,WIC值降低4.99%,头部损伤值基本没有变化;将碰撞初速度增大至64 km/h后,最优匹配方案表现出更好的保护效果,乘员头部、胸部、颈部、大腿损伤值分别降低26.19%、33.21%、20.49%、6.11%,WIC值降低28.01%。  相似文献   

4.
Intracranial saccular aneurysms are balloon-like distensions of the arterial wall; they increase in size gradually, a few to the point of bleeding or catastrophic rupture. Collagen is the primary structural component of the aneurysmal wall, and because only a small fraction of aneurysms fail, the collagen fabric must effectively reorganize in order to maintain mechanical integrity as an aneurysm changes size. Data were obtained from four human aneurysms, fixed at 110 mmHg of distending pressure with 10% buffered formalin, and sectioned completely through at 4 μm thickness. Each set of measurements included groups of data taken layer by layer from a radial corridor across the aneurysm wall. Each three-dimensional orientation measurement, for which we used a Zeiss polarizing microscope with a universal stage attachment, is defined by an azimuth and elevation angle relative to the section plane. We compared the interdependence of these measured angles with a mathematical model based on fibres following great circle trajectories, and related the measured azimuth and elevation angles to the relative depth of the section into the aneurysm. Data were plotted on Lambert equal-area projections, along with the theoretical relation between azimuth and elevation, that included wall thickness and depth of sectioning. The graphical relationship between measured azimuth and elevation for collagen fibres across the layered fabric of the aneurysmal wall is consistent with the theoretical great circle trajectories for collagen fibre alignment. Analysis was based on statistics for spherical data to give values for the mean orientation and the circular standard deviations (CSD) about that mean. The results indicate that any given region on the aneurysm wall is made up of many, very thin sublayers, most of which have a relatively coherent organization (mean CSD 8°). These measurements agree well with the mathematical model and, when considered collectively, the layers provide a balanced distribution for bearing the biaxial tensile stress of the wall.  相似文献   

5.
A new fixation device, the femoral clamp, was developed in this study for the ultrasound measurement of patellar medio-lateral motion during sitting and squatting knee flexion/extension. Seventeen subjects, 6 males, 11 females, aged between 18 and 40 years were recruited for the test. Results showed that the patella moved medially then laterally from extension to flexion when sitting. Weight-bearing knee motion produced a more laterally tracked patella without the presence of the initial medial patellar translation. The tracking patterns of the patellae were similar regardless of knee movement direction. The patellar lateral position was greatly affected by the movement task (p < 0.0005), and was also influenced by gender for maximum medial position (p < 0.05). The reproducibility of the measurement was between 0.29 and 0.90 for the intra-rater and 0.34-0.75 for the inter-rater reliability. The accuracy of the ultrasound measurement was validated by interventional magnetic resonance (iMR) imaging of the patella and the mean error of the measurement was 1.4 +/- 3.2 mm. Although further research is needed to improve the accuracy and reliability of this method, it has demonstrated the feasibility of obtaining patellar tracking data during load-bearing activities.  相似文献   

6.
Gait analysis using 3D motion capture systems provides joint kinematic and kinetic analysis results such as joint relative angles and moments that can be use used to evaluate the degrees of pathological gait patterns. However, the complex data produced using these 3D motion capture systems can only analyzed by experts, because the gait analysis is highly coupled to the kinematics of each joint. Therefore, several Several previous studies using gait analysis have relied on the data compression technique to represent gait deviation from the average normal profiles as a single value. Even though it is important to evaluate gait pathologies at the joint level, all these previous studies have just used a single value to evaluate the pathological gait pattern. Using just one variable for evaluation of a gait is limited in terms of determining which joint movement patterns are getting better during rehabilitation. Therefore, in this study, a method suitable for evaluating gait deviation during a gait was developed to provide three indices for the hip, knee and ankle joints. In addition, to validate the proposed method in clinical cases, experimental tests were conducted on thirty thirty-six normal walkers and six patients with cerebral palsy. Furthermore, to validate the proposed method in regards to rehabilitation, experimental tests were conducted on three classified walking groups with imposed ankle equinus constraints. The JNI for the hip joint, knee joint and ankle were 8.78 (±3.70), 2.92 (±3.25) and 8.79 (±4.38), respectively, in the normal walking group. However, these values were significantly different for the pathological walking group with cerebral palsy. The JNI of the hip joint, knee joint and ankle joint were 203.73 (±171.59), 81.23 (±52.13) and 248.39 (±149.99), respectively, for this group. There were also differences between any two of the three classified groups with imposed ankle equinus constraints. In particular, the JNI of the ankle joint was statistically different at the p<0.01 level, and this parameter clearly increased as the degree of the imposed ankle equinus was increased. These results demonstrate that the proposed JNI can be used as a scalar factor to evaluate the angular deviation of each joint in normal and patient groups. In addition, this approach can be adapted to evaluate rehabilitation and pre/post surgery.  相似文献   

7.
静电悬浮加速度计轴间耦合误差角与悬浮质量块的平行度误差有关,而常规方法很难测量其大小和方向,故本文提出了一种变预载轴间耦合误差角在线测量方法。通过分析悬浮质量块平行度误差、耦合误差角、姿态角与静电力耦合的关系,推导了变预载法进行在线耦合误差角精确测量的原理和公式。设计了静电悬浮加速度计原理样机,并利用该样机对提出的测量方法进行了实验验证。实验测得X向对Y/Z向耦合误差角分别为-5.10×10-4 rad和2.36×10-5rad,与理论分析相符。该方法同样适用于Y向对X/Z及Z向对X/Y的耦合误差角的在线测量。上述结果表明该方法可以有效、精确地完成静电悬浮加速度计不同轴之间耦合误差角的在线测量。  相似文献   

8.
Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.  相似文献   

9.
The shoulder kinematics of five able-bodied subjects and those of five arms in three subjects with spinal cord injuries at C5 or C6 levels were measured as the subjects elevated their arms in three different planes: coronal, scapular and sagittal. The range of humeral elevation was significantly reduced in all spinal cord injury (SCI) subjects relative to able-bodied subjects. Over this restricted range of humeral motion, the scapula of SCI subjects tended to be medially rotated, relative to able-bodied subjects, and the protraction and spinal tilt angles of the scapula of the SCI subjects indicated scapular winging. These results are consistent with paralysis or at least with significant weakness of the serratus anterior muscle. If further study confirms this hypothesis, functional neuromuscular stimulation of the serratus anterior muscle via a nerve cuff electrode may be an effective intervention for improving shoulder function in C5-C6 SCI.  相似文献   

10.
It is well known that the geometry of the articular surface has a major role in determining the position of articular contact and the lines of action for the contact forces. The contact force calculation of the knee joint under the effect of sliding and rolling is one of the most challenging issues in this field. We present a 3-D human knee joint model including sliding and rolling motions and major ligaments to calculate the lateral and medial condyle contact forces from the recovered total internal reaction force using inverse dynamic contact modeling and the Least-Square method. As results, it is believed that the patella, muscles and tendon affect a lot for the internal reaction forces at the initial heel contact stage. With increasing flexion angles during gait, the decreasing contact area is progressively shifted to the posterior direction on the tibia plateau. In addition, the medial side contact force is larger than the lateral side contact force in the knee joint during normal human walking. The total internal forces of the knee joint are reasonabe compared to previous studies.  相似文献   

11.
Knowledge of three-dimensional skeletal kinematics during functional activities such as walking, is required for accurate modelling of joint motion and loading, and is important in identifying the effects of injury and disease. For example, accurate measurement of joint kinematics is essential in understanding the pathogenesis of osteoarthritis and its symptoms and for developing strategies to alleviate joint pain. Bi-plane X-ray fluoroscopy has the capacity to accurately and non-invasively measure human joint motion in vivo. Joint kinematics obtained using bi-plane X-ray fluoroscopy will aid in the development of more complex musculoskeletal models, which may be used to assess joint function and disease and plan surgical interventions and post-operative rehabilitation strategies. At present, however, commercial C-arm systems constrain the motion of the subject within the imaging field of view, thus precluding recording of motions such as overground gait. These fluoroscopy systems also operate at low frame rates and therefore cannot accurately capture high-speed joint motion during tasks such as running and throwing. In the future, bi-plane fluoroscopy systems may include computer-controlled tracking for the measurement of joint kinematics over entire cycles of overground gait without constraining motion of the subject. High-speed cameras will facilitate measurement of high-impulse joint motions, and computationally efficient pose-estimation software may provide a fast and fully automated process for quantification of natural joint motion.  相似文献   

12.
为满足炮射廉价航空CCD摄像机的对地定位需求,提出一种基于四个已知等高地面控制点的航空摄像机参数估计方法。该方法根据单张航空像片估计伞载空中摄像机焦距及摄像机在世界坐标系中的位置和姿态角等外参数,利用直接线性变换算法求取已知等高地面控制点与对应像点之间的单应矩阵,建立了单应矩阵与共线条件方程之间的关联关系,最后根据关联关系推导出计算航空摄像机焦距、纵横比、位置和姿态角等内外参数的数学模型。为考查该方法的有效性,分别运用室内模拟控制点和野外真实控制点进行了实验。实验结果表明:在给定四个等高地面控制点的三维坐标及对应像点的二维坐标的情况下,该方法计算焦距、纵横比、位置和姿态角等摄像机参数的相对误差约为2%,参数估计结果基本满足炮射摄像机对地成像定位需求。  相似文献   

13.
A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100 mm/min and 10 mm/min) and different elbow flexion positions 45°, 90° and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45° elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10 mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90° and 135° elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.  相似文献   

14.
An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.  相似文献   

15.
车载经纬仪的静态指向误差补偿   总被引:2,自引:0,他引:2  
为了降低载车平台变形对经纬仪静态测角精度的影响,补偿较大变形产生的测角误差,实现移动站弹道测量,分析了平台变形对光电经纬仪静态测角误差影响的基本原理,利用固定在方位轴轴心的倾角传感器测量出因平台变形而导致的经纬仪工作基准面中心点与水平面变化的夹角,并计算其测量坐标系的变化量。建立了平台中心变形角的底部轮廓图,经过有限的平台变形采样,存入计算机,在计算机中以方位、俯仰角为输入变量建立二维查找表,通过插值计算全方位角和全俯仰角的平台变形量,进行事后补偿。实验结果表明,该方法能够有效地补偿因平台变形而带来最大为142″的测角误差,使方位测角精度提高44″,俯仰测量精度提高8.5″。该方法为实现高精度车载光电测量提供了一种有效的途径。  相似文献   

16.
Motor rehabilitation techniques based on passive movement of the lower limbs have been developed over the past 15 years. Gait training automation is the latest innovation in these techniques. This paper describes the design and development of a pneumatic interactive gait rehabilitation orthosis (PIGRO), as well as the first experimental results obtained with healthy subjects. PIGRO consists of a modular and size-adaptable exoskeleton, pneumatic actuation systems for the six actuated degrees of freedom (DoF), and a control unit. The foot orthosis and ankle actuation can be removed and/or replaced with orthopaedic shoes so as to permit gait rehabilitation while advancing between parallel bars with ground contact and partial body weight support (i.e. not walking in place). Control logic provides closed-loop position control independently on each joint, with position feedback for each joint in real time. Imposed curves are physiological joint angles: it is also possible to choose between activating one or both legs and to modify curves to obtain different gait patterns if required. The paper concludes with a presentation of experimental results for the device's performance.  相似文献   

17.
A study was undertaken to determine the applicability of a multivariate discriminant technique in order to analyse human kinematic data, specifically lumbar motion during forward flexion. This method was used in an attempt to allow comparison of time-series data (three joint angles and three linear displacements) between groups of subjects. Results obtained from ten healthy subjects performing simulated abnormal styles of forward flexion indicate the feasibility and potential utility of this method in a clinical environment. Further investigations will be undertaken on clinical subjects to discriminate more effectively between healthy and pathological movements.  相似文献   

18.
Many studies have reported postural control against support surface translation. However, postural control mechanism against external force perturbation is not clear. Therefore, in this study we investigated the postural recovery against external force (1∼4Kg) applied to the high-back in health young male subjects (24±4 years). Kinematic data and center of pressure of the reaction to an unexpected perturbation were analyzed. Experimental results showed that the hill-lifting strategy with ankle plantarflexion and knee hyperextension was used in all subjects, regardless of the force magnitude. Specifically, maximum ankle plantarflexion and hip flexion increased with the perturbation force magnitude, the heel vertical excursion and anterior COP excursion. The results of this study show that the postural control strategy for the external force perturbation is quite different from that for surface translation and needs further investigation.  相似文献   

19.
Previous studies have demonstrated the importance of joint angle errors mainly due to skin artifact and measurement errors during gait analysis. Joint angle errors lead to unreliable kinematics and kinetic analyses in the investigation of human motion. The purpose of this paper is to present the Joint Averaging Coordinate System (JACS) method for human gait analysis. The JACS method is based on the concept of statistical data reduction of anatomically referenced marker data. Since markers are not attached to rigid bodies, different marker combinations lead to slightly different predictions of joint angles. These different combinations can be averaged in order to provide a “best” estimate of joint angle. Results of a gait analysis are presented using clinically meaningful terminology to provide better communication with clinical personal. In order to verify the developed JACS method, a simple three-dimensional knee joint contact model was developed, employing an absolute coordinate system without using any kinematics constraint in which thigh and shank segments can be derived independently. In the experimental data recovery, the separation and penetration distance of the knee joint is supposed to be zero during one gait cycle if there are no errors in the experimental data. Using the JACS method, the separation and penetration error was reduced compared to well-developed existing methods such as ACRS and Spoor & Veldpaus method. The separation and penetration distance ranged up to 15 mm and 12 mm using the Spoor & Veldpaus and ACRS method, respectively, compared to 9 mm using JACS method. Statistical methods like the JACS can be applied in conjunction with existing techniques that reduce systematic errors in marker location, leading to an improved assessment of human gait.  相似文献   

20.
研制了一套3自由度外骨骼式远程康复系统,进行康复训练时,外骨骼系统可以带动人体上肢实现肩部的屈/伸运动、外摆/内收运动及肘部的屈/伸运动。应用虚拟现实技术制作了一个虚拟人和一个虚拟场景,虚拟人处于虚拟场景中,它可以跟随患者一起运动,并可以在虚拟场景中进行漫游,增加了康复训练的趣味性,可获得更好的康复效果。将网络技术应用于康复训练,设计了一套远程监控系统,医生可以通过虚拟人的运动对外骨骼的运动进行远程监控,进而了解患者手臂的运动,用虚拟人的运动再现患者的运动实现监控功能,克服了因使用摄像头视觉反馈系统而需要大量图像数据传输的弊端。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号