首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过引入预热工艺,提高反应体系绝热温度,采用超重力场辅助自蔓延燃烧合成技术,成功制备出TiB_2-TiC-(Ti,W)C复相陶瓷,并探究预热温度对反应绝热温度及产物组织性能的影响。研究表明:当预热温度较低时,陶瓷晶粒较粗大,组织均质性、致密性较差,断裂韧性偏低;随着预热温度的提高,陶瓷组织不断改善,断裂韧性不断提高,当预热温度为498 K时,显微组织和力学性能达到最优;进一步提高预热温度,会使陶瓷性能下降。  相似文献   

2.
用Al、Fe2O3、NaF等混合粉末,在钢管内利用重力自蔓延燃烧合成(SHS)技术制备陶瓷内衬复合钢管。研究NaF的加入量对Al-Fe2O3自蔓延反应体系燃烧合成过程、燃烧产物和性能的影响,讨论燃烧合成机理。结果表明,NaF作为Al-Fe2O3自蔓延反应体系的稀释剂,随NaF加入量的增加,体系的自蔓延速率呈现先减小后增大的趋势。在钢管内壁的陶瓷形成过程中,NaF通过降低熔体结晶温度和熔体动力粘度而促使陶瓷致密。  相似文献   

3.
以Ti、Al、C单质粉末为原料,通过高温自蔓延制备高纯的Ti3AlC2材料,研究钛碳比、铝含量及添加助剂Si对Ti3AlC2合成的影响,利用XRD和SEM研究该材料的物相组成和显微结构。结果表明:Si元素的加入显著促进了Ti3AlC2的合成;钛碳比及Al的相含量对Ti3AlC2的形成有很大影响,合适的钛碳比和适当过量的Al有利于提高粉体中Ti3AlC2的含量;通过K-值法估算Ti3AlC2的纯度,以3Ti/1.2Al/2C/0.3Si粉体为原料经高温自蔓延获得了质量分数达92.6%的Ti3AlC2粉体。  相似文献   

4.
对不同成分配比的Fe2O3粉和Al粉末生坯分别进行900,1 000,1 100℃烧结,利用自蔓延反应放热和加热炉加热的综合作用制备FeAl/Al2O3复合材料。用扫描电镜、维氏硬度计、M-200型磨损试验机对烧结合金的金相组织、硬度以及磨损性能进行测试。结果表明:Fe2O3-Al在适当配比和烧结温度下,可以合成以FeAl为基体、Al2O3和铝铁金属间化合物为增强相的复合材料;试样烧结前后相对密度受Al含量和烧结温度的影响,Al含量越高,烧结温度越高,相对密度越大;Al的质量分数为40.3%,1 100℃烧结后的样品具有最高硬度和最佳耐磨性能。  相似文献   

5.
为获得准确可靠的复合推进剂凝聚相燃烧产物(CCPs)的理化特性,提出了一种基于微波消解的乙二胺四乙酸(EDTA)滴定法以实现凝聚相燃烧产物全组分定量解析.采用自研凝聚相燃烧产物收集系统获取了四组元推进剂凝聚相燃烧产物,针对活性Al含量对比分析了EDTA滴定法、电感耦合高频等离子体发射光谱法(ICP)、气体容量法及重铬酸钾滴定法等4种方法的测试精度.结果表明,基于微波消解的EDTA滴定法能准确测定复合推进剂凝聚相燃烧产物中的Al、Al2O3、AlN、Fe2O3和C等组分含量.微波消解能有效溶解包裹在活性Al表面的Al2O3壳层,其最优溶液配比参数为VH3PO4:VH2SO4:VHNO3=10:2:1,温度为240℃,时间为150 min.ICP光谱法也能检测凝聚相燃烧产物中的全部组分,精度略低于EDTA滴定法.气体容量法和重铬酸钾滴定法测定凝聚相燃烧产物中活性Al的含量则显著低于EDTA滴定法和ICP光谱法.EDTA滴定法测定活性Al含量最精确,其精度相较气体容量法、重铬酸钾滴定法、ICP光谱法分别提高60%,40%,22%.  相似文献   

6.
以自蔓延高温合成技术(SHS)为基础,采用自反应淬熄法研究TiO2+蔗糖,TiO2+蔗糖+Al两种体系下空心陶瓷微珠的反应生成情况。以SEM、XRD、EDS为手段分别测试所得产物的形貌、主要相组成以及微区成分组成。结果表明:TiO2+蔗糖体系所得产物由不规则的块状物质与表面凹凸不平的类球形物质组成;TiO2+蔗糖+Al体系熔射产物全部由表面光滑的球形颗粒组成。球形颗粒为空心结构,主要组成为Al2O3-TiC复相和少量的铝钛合金、AlN以及Ti(C,N)。Al的加入大大改善了空心微珠的生成。  相似文献   

7.
为有效促进Al/Ti金属间反应,利用高能球磨法制备Al/Ti@AP/NC和Al/Ti@PVDF/CL-20两种核壳型复合燃料。采用扫描电子显微镜评估复合颗粒的包覆效果,利用综合热分析仪研究复合燃料的热反应性能,通过氧弹燃烧仪测试复合燃料的能量性能,借助综合燃烧诊断系统研究复合燃料的燃烧特性,利用扫描电子显微镜和X射线衍射仪研究Al/Ti基复合燃料燃烧产物的形貌及成分。研究结果表明:采用高能球磨法可使含能复合物均匀包覆在Al/Ti表面;Al/Ti的加入促进了含能复合物分解,同时含能复合物包覆增强了Al/Ti金属间反应、提高了燃料的火焰传播速度和燃烧波温度;尤其是采用AP/NC含能复合物为包覆层的复合燃料,其火焰传播速度(246.6 mm/s)较相同配方未包覆含能复合物的Al/Ti(23.5m/s)增加了9.5倍,燃烧波温度(1 703.2℃)较Al/Ti(1 069.3℃)提高了59.3%。复合燃料凝聚相燃烧产物成分取决于包覆物元素组成,凝聚相燃烧产物主要包含AlTi2C和Ti(O0.19C0.53N0.32  相似文献   

8.
选用亚共晶Ni65Al35粉末,加入不同含量的钨精矿粉并压制成坯。利用激光引燃自蔓延烧结合成技术合成NiAl基复合材料。采用OM、XRD进行微观组织观察及结构分析,并进行硬度、耐磨性和耐蚀性能测试。结果表明:合成产物组织由针状晶和胞状晶组成;随钨精矿粉含量的增加,针状晶变得细小并逐渐转变为胞状晶;烧结合金产物物相由NiAl、Ni3Al、Ni4.22Al0.9、Ni17W3、Ni4W、Al2O3等组成。当钨精矿粉的质量分数为2%,合金硬度最高为654.7HK;耐磨性能最好,磨损率最低为0.31 mg/mm2;钨精矿粉的加入降低了烧结合金的耐蚀性能,减小了合金钝化区,钝化电位区间由1 500 mV缩短至1 100 mV。  相似文献   

9.
以Ni粉和Al粉为原料用高温自蔓燃合成法制备相对密度为95%~97%的Ni_3Al金属间化合物。当Al粉与Ni粉粒度比D_(Al)/D_(Ni)≥3时,合成可以通过热爆炸或燃烧波的柱面传播两种方式实现。热爆炸方式合成导致试样的强烈的向心收缩;而燃烧波以2~4cm/s的速度柱面传播,并不破坏Ni_3Al致密化过程,试样呈现良好的尺寸稳定性。  相似文献   

10.
六方BN基陶瓷材料的自蔓延高温合成工艺的研究   总被引:3,自引:1,他引:2  
采用自蔓延高温合成工艺制备了六方 BN基陶瓷件。压坯由无定形 B粉加六方 BN稀释剂或 Si O2 添加剂经冷等静压工艺制成 ,孔隙率为 48%。压坯与 80 MPa N2 反应合成 BN基陶瓷件 ,纯 BN制件致密度为 68% ,BN基制件致密度为 78%。对合成产物进行了 XRD相分析和 SEM断口形貌分析  相似文献   

11.
在Ni14.3Al5.7中掺杂原子数分数为1.86%的B,将原始粉末压制成坯。采用不同激光点火功率对压坯进行激光诱导自蔓延烧结,利用SEM、XRD及硬度、磨损、耐蚀性测试表征手段,分析研究烧结合金的微观组织结构及宏观性能。结果表明:未添加B,烧结合金物相为Ni3Al、NiAl、Al2O3,合金组织呈网状分布;掺杂B后,烧结产物为Ni3Al、NiAl、Al4B2O9、Al2O3,对产物组织形貌影响较小。当烧结功率为700 W,烧结合金的显微硬度达到381.27HV,维钝电流为0.253 mA/mm2;功率为1 100 W,相对密度达89.3%;功率为900 W,耐磨性最佳,相对质量损失为0.24%。在相同烧结功率下,B提升了烧结合金的相对密度、硬度,但耐磨性、耐蚀性能有所下降。  相似文献   

12.
低温燃烧合成制备非晶氧化铝及其晶型转变   总被引:1,自引:0,他引:1  
以硝酸铝和尿素为原料(质量比为2.5:1),采用低温燃烧合成法制备了不同晶态的超细Al2O3,对在300℃时点火获得的非晶Al2O3进行了煅烧处理。XRD分析发现,由低温燃烧合成制备的非晶态Al2O3向α相转变的温度≥1000℃,晶化过程中仅发生非晶→γ→α的相变。TEM与选区衍射表明当预热温度小于400℃时,可以获得非晶Al2O3,并呈现出不规则片状,尺寸在200-400nm。  相似文献   

13.
研究了以硝酸铷为氧化剂,分别以金属镁粉、镁铝合金粉、钛粉、氢化钛粉、硼为可燃剂,以氟橡胶(FPM)为黏合剂组成的5组烟火药剂的燃烧性能,用DSC分析了药剂的分解过程,测定了燃烧热和燃烧火焰温度,并与REAL程序计算的绝热火焰温度值进行了比较,测试了烟火药剂的近红外(0.7~1.1μm)辐射强度和可见光(0.4~0.7μm)光强。结果表明:含B与Ti的热分解过程较类似;Mg/RbNO3/FPM烟火药剂的燃烧热值最高为4939 kJ.kg-1,5组药剂燃烧热顺序为Mg>Al3Mg4>TiH2>Ti>B。Ti/RbNO3/FPM烟火药剂的燃烧火焰温度最高,高于2700℃,实测的燃烧火焰温度比REAL程序计算的理论绝热火焰温度低;TiH2的近红外(0.7~1.1μm)辐射强度与可见光光强之比为1.654,隐身指数较高,有望成为良好的红外照明剂组分。  相似文献   

14.
简要总结了自蔓延高温反应(SHS)的国内外发展过程。从SHS前驱体元素体系的组成及SHS产物的应用方向(粉体功能材料、陶瓷材料、涂层材料等)进行了分类阐述,着重分析了未来含能材料在SHS方面的应用。其次,重点分析了适用于不同应用方向SHS材料的点火机制、反应机制、热力学和动力学等理论分析,在此基础上提出绝热温度不是SHS反应唯一判据的新观点。最后,介绍了自蔓延高温反应的燃烧机理,阐明了反应物粒径、球磨参数、反应物压坯压力等工艺参数对SHS反应的影响,同时对SHS技术发展中存在问题进行了分析。  相似文献   

15.
发射药的火焰燃烧温度计算与测定分析   总被引:1,自引:1,他引:0  
采用绝热火焰的定压近似计算法,对单基药H100和H130、双基药SF-3、改性双基药171-25和GT的火焰燃烧温度进行计算,并采用比色红外测试仪测量发射药的实际温度.结果表明,H130、SF-3试验结果与计算值比较吻合,其最高燃烧温度为2188 K和2230 K;用于热源时,双基药的性能优于单基药;利用该比色测温仪无...  相似文献   

16.
以TiC,Ti,Al,C粉末为反应物原料,采用自蔓延高温反应按照质量分数为15% TiC,50% Ti,28% Al,7% C的配比合成了纯度为96.76%、气孔率为9.45%的高纯Ti3AlC2块体材料。研究添加TiC对合成产物Ti3AlC2材料纯度的影响,并对其摩擦磨损性能进行分析。结果表明:当添加TiC的质量分数小于15%,Ti3AlC2含量随TiC含量的增加而增加;当添加TiC质量分数大于15%,Ti3AlC2含量随TiC含量的增加而降低。当载荷较小,Ti3AlC2材料以磨粒磨损为主;而载荷较大,其以磨粒磨损为主并伴随有轻微黏着磨损。  相似文献   

17.
硝酸钡系白光剂的热危险性研究   总被引:2,自引:2,他引:0  
蒋慧灵  孙斌 《含能材料》2012,20(3):359-363
为揭示烟火剂对热的危险性,用绝热量热仪(accelerating rate calorimeter,ARC)研究了干燥和潮湿硝酸钡系白光剂的绝热反应过程。得到了绝热反应温度随时间和温升速率随温度的变化曲线,用伪逆矩阵法计算了干燥和潮湿烟火剂放热反应的活化能和指前因子,用热惰性因子修正了测定数据。结果表明,对干燥烟火剂,放热反应的初始温度、最终温度、初始自加热速率、最大自加热速率、最大自加热速率温度和达到最大速率所需时间分别为567.75 K、740.48 K、0.17 K.min-1、61.56 K·min-1、707.5 K和145.93 min。对潮湿烟火剂,其值分别为363.59 K、1128.8 K、0.07 K·min-1、0.77 K.min-1、799.47 K和1480.86 min。这表明,潮湿烟火剂易反应,干燥烟火剂的反应速率高于潮湿烟火剂。  相似文献   

18.
燃烧合成多孔碳化硅陶瓷基复合材料   总被引:4,自引:0,他引:4  
采用燃烧合成技术制备多孔碳化硅基复合材料。利用Si、C、Ti体系的放热反应得到SiC/TiC复相陶瓷,其中Ti+C含量要大于25%,否则燃烧反应无法完全进行。燃烧合成产物中含有α—SiC、β-SiC、TiC和少量Si。所研究体系的产物致密度为理论密度的45%~64%。对燃烧合成产物进行了XRD相分析和SEM断口形貌分析。  相似文献   

19.
通过ZrB2在埋碳还原性气氛下的高温煅烧实验,研究不同种类ZrB2添加剂的抗氧化性能及其抗氧化机理。利用透射电镜观察不同种类的炭黑结构,分析其对抗氧化性能的影响;利用X线衍射、扫描电镜和能谱分析、热重和差热分析,研究两种不同方法制备的ZrB2在CO气氛下高温煅烧时的反应机理,并对比其抗氧化性的差异。结果表明:通用炉黑和半补强炭黑的炭黑球径大、结构较低、分散性好,其抗氧化效果好;与碳热还原ZrB2相比,自蔓延合成ZrB2在MgO-C制品中起到更好的抗氧化效果。  相似文献   

20.
为了探究固体硼氢燃料对铝粉燃烧反应机理的影响,采用同步热分析?红外质谱联用技术及热裂解原位池?傅里叶变换红外光谱联用技术,对十二氢十二硼酸双四乙基铵(BHN?12)的热分解反应机理及反应动力学进行研究.在此基础上,结合数值模拟建立BHN?12在爆炸流场中对铝粉燃烧反应影响的模型,探究硼氢燃料在流场中的反应时间、分散特性以及对铝粉的助燃效应.结果表明,BHN?12热分解开始温度约314℃,结束温度约360℃.分解过程中出现三个放热峰和两个吸热峰,总质量损失范围为32.3%~33.9%.分解过程遵从幂级数法则(Mampel power),动力学机理函数为G(α)=α1/2.分解后的气体产物主要为H2、C2H4、C2H6和NH3,固体产物为非晶态的C和B单质.采用组分运输模型可较好地模拟Al/BHN?12体系的后燃烧反应过程,在该过程中,Al燃料的分散速度比BHN?12粒子的分散速度慢,20 ms时,Al燃料的分散半径约2.5 m,BHN?12的分散半径约3 m.在反应初期2 ms时,无分解气体产物出现;大约4 ms时,开始出现气体产物,反应火球中部的温度约为1800℃,BHN?12可提升体系的后燃反应温度约300℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号