首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The contents of the mRNAs encoding the gamma- and epsilon-subunits of the nicotinic acetylcholine receptor as well as the single-channel properties of the receptor have been assessed in innervated, denervated and reinnervated rat muscle. The changes in abundance of the gamma- and epsilon-subunit mRNAs correlate with the changes in relative density of two classes of acetylcholine receptor channels. The results support the view that a switch in the relative abundance of the gamma- and epsilon-subunit mRNAs is a major mechanism in regulating the properties of acetylcholine receptor channels in muscle.  相似文献   

3.
Denervation of adult skeletal muscle results in increased sensitivity to acetylcholine in extrajunctional regions of the muscle fiber. This increase in acetylcholine sensitivity is accompanied by a large increase in the level of mRNAs coding for the alpha-, beta-, gamma-, and delta-subunits of the acetylcholine receptor. To determine whether muscle activity is sufficient to regulate expression of extrajunctional acetylcholine receptor mRNA levels, denervated muscles were stimulated with extracellular electrodes. Direct stimulation of denervated muscle suppresses both the increase in extrajunctional acetylcholine sensitivity and the expression of mRNA encoding the alpha-, beta-, gamma-, and delta-subunits of the acetylcholine receptor. These results show that muscle activity regulates the level of extrajunctional acetylcholine receptors by regulating the expression of their mRNAs.  相似文献   

4.
The ontogenetic development of poly(A)+ mRNAs coding for receptors to several neurotransmitters (kainate, glutamate, acetylcholine, and serotonin) and voltage-operated channels (sodium and calcium) was studied by isolating total poly(A)+ mRNA from the brains of rats at various developmental stages and injecting it into Xenopus oocytes. The oocytes translated the foreign mRNA and incorporated functional receptor/ion channel complexes into the cell membrane. Thus, recording of induced membrane currents in voltage-clamped oocytes gave a measure of the relative amounts of the different messengers. Responses induced by kainate, glutamate, acetylcholine, and serotonin all increased with age and reached a maximum in oocytes injected with mRNA from adult cortex. Messenger RNAs for the earliest ages examined, Embryonic Days 15 and 18, expressed little or no response to kainate, glutamate, or acetylcholine, while 50-70% of the adult response was reached by Postnatal Day 10. In contrast, the serotonin-induced response was already comparatively large (16% of the adult level) in oocytes injected with mRNA from Embryonic Day 15 brain and increased postnatally to adult levels. The expression of voltage-dependent sodium and calcium channels was small in oocytes injected with mRNA from embryonic animals and increased postnatally to reach a maximum in oocytes injected with mRNA from adult animals.  相似文献   

5.
Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses   总被引:27,自引:6,他引:21  
To elucidate the nature of signals that control the level and spatial distribution of mRNAs encoding acetylcholine receptor (AChR), alpha-, beta-, gamma-, delta- and epsilon-subunits in muscle fibers chronic paralysis was induced in rat leg muscles either by surgical denervation or by different neurotoxins that cause disuse of the muscle or selectively block neuromuscular transmission pre- or postsynaptically and cause an increase of AChRs in muscle membrane. After paralysis, the levels and the spatial distributions of the different subunit-specific mRNAs change discoordinately and seem to follow one of three different patterns depending on the subunit mRNA examined. The level of epsilon-subunit mRNA and its accumulation at the end-plate are largely independent on the presence of the nerve or electrical muscle activity. In contrast, the gamma-subunit mRNA level is tightly coupled to innervation. It is undetectable or low in innervated normally active muscle and in innervated but disused muscle, whereas it is abundant along the whole fiber length in denervated muscle or in muscle in which the neuromuscular contact is intact but the release of transmitter is blocked. The alpha-, beta-, and delta-subunit mRNA levels show a different pattern. Highest amounts are always found at end-plate nuclei irrespective of whether the muscle is innervated, denervated, active, or inactive, whereas in extrasynaptic regions they are tightly controlled by innervation partially through electrical muscle activity. The changes in the levels and distribution of gamma- and epsilon-subunit-specific mRNAs in toxin-paralyzed muscle correlate well with the spatial appearance of functional fetal and adult AChR channel subtypes along the muscle fiber. The results suggest that the focal accumulation at the synaptic region of mRNAs encoding the alpha-, beta-, delta-, and epsilon-subunits, which constitute the adult type end-plate channel, is largely determined by at least two different neural factors that act on AChR subunit gene expression of subsynaptic nuclei.  相似文献   

6.
7.
D Goldman  J Staple 《Neuron》1989,3(2):219-228
In adult vertebrate skeletal muscle acetylcholine receptors are localized to the neuromuscular junction. Upon denervation, this distribution changes, with new receptors appearing in extrajunctional regions of the muscle fiber. The location of acetylcholine receptors in innervated or denervated muscle may result, in part, from the distribution of their RNAs. This was tested by assaying for receptor RNAs in junctional and extrajunctional regions of innervated and denervated rat soleus muscle using in situ hybridization and RNAase protection assays. These experiments showed alpha, beta, and delta subunit RNAs concentrated beneath the endplates of innervated muscle fibers. Following denervation, there was an unequal distribution of receptor RNAs along the muscle fiber, with highest levels occurring in extrajunctional regions near the endplate. These data are consistent with a nonuniform pattern of gene expression in adult skeletal muscle fibers.  相似文献   

8.
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no more homologous to SkM1 than to the rat brain sodium channels and differs notably from SkM1 in having a longer cytoplasmic loop joining domains 1 and 2. Steady-state mRNA levels for SkM1 and SkM2 are regulated differently during development and following denervation: the SkM2 mRNA level is highest in early development, when TTX-insensitive channels predominate, but declines rapidly with age as SkM1 mRNA increases; SkM2 mRNA is not detectable in normally innervated adult skeletal muscle but increases greater than 100-fold after denervation; rat cardiac muscle has abundant SkM2 mRNA but no detectable SkM1 message. These findings suggest that SkM2 is a TTX-insensitive sodium channel expressed in both skeletal and cardiac muscle.  相似文献   

9.
10.
We have examined the single channel properties of newly synthesized acetylcholine (ACh) receptors in denervated adult mouse muscle. Patch-clamp recordings were made on freshly isolated fibers from flexor digitorum brevis (fdb) muscles that had been denervated in vivo for periods up to 3 wk. Muscles were treated with alpha-bungarotoxin (alpha-BTX), immediately before denervation, in order to block pre-existing receptors. Denervated fibers exhibited two types of ACh receptor channels, which differed in terms of single channel conductance (45 and 70 pS) and mean channel open time (approximately 7 and 2.5 ms, respectively). In contrast to innervated muscle, where only 3% of the total openings were contributed by the low-conductance channel type, greater than 80% of the openings in the nonsynaptic membrane of denervated muscle were of this type. Importantly, a similar increase in the proportion of low-conductance channels was observed for recordings from synaptic membrane after denervation. These data argue against the proposal that, in denervated muscle, the low-conductance channels undergo continued conversion to the high-conductance type focally at the site of former synaptic contact. Rather, our findings provide additional support for the idea that the functional properties of ACh receptors are governed uniformly by the state of innervation of the fiber and not by proximity to the site of synaptic contact.  相似文献   

11.
B Rudy  J H Hoger  H A Lester  N Davidson 《Neuron》1988,1(8):649-658
Fast transient K+ channels (A channels) of the type operating in the subthreshold region for Na+ action potential generation were expressed in Xenopus oocytes injected with rat brain poly(A) RNA. Sucrose gradient fractionation of the RNA separates mRNAs encoding A-currents (6-7 kb) from mRNAs encoding other voltage-dependent K+ channels. A-currents expressed with fractionated mRNA differ in kinetics and pharmacology from A-currents expressed with total mRNA. The original properties of the A-currents can be reconstituted when small mRNAs (2-4 kb) are added to the large mRNA fraction. Thus the properties of the A-currents expressed with total poly(A) RNA depend on the presence of more than one mRNA species. mRNA(s) present in the large RNA fraction must encode channel subunits since they express an A-current by themselves. The small mRNA(s) may encode a second subunit(s) or a factor, such as an enzymatic activity that modulates the properties of the channels, which could play a role in generating A-channel functional diversity.  相似文献   

12.
13.
The cytoplasmic injection of mRNA synthesized in vitro into Xenopus oocytes is widely used for heterologous expression of ion channels and neurotransmitter receptors. We report two new methods for expression of ion channels and receptors in oocytes using vaccinia virus (VV). 1) A recombinant VV carrying the Shaker H4 K+ channel cDNA driven by the VV P7.5 early promoter was injected into oocytes. 2) A recombinant VV containing the bacteriophage T7 RNA polymerase driven by the P7.5 promoter was coinjected along with plasmids containing a T7 promoter and cDNAs for channels and receptors. The functionally expressed proteins include a) voltage-gated ion channels: the Shaker H4 K+ channel and the rat brain IIA Na+ channel, b) a ligand-gated ion channel: the mouse muscle nicotinic acetylcholine receptor (AChR), and c) a G protein-coupled receptor: the rat brain 5HT1C receptor. After virus/cDNA injection into oocytes, these channels and receptors generally showed characteristics and expression levels similar to those observed in mRNA-injected oocytes. However, the AChR expressed at lower levels in virus/cDNA-injected oocytes than in mRNA-injected oocytes. Because our methods bypass mRNA synthesis, they are more rapid and convenient than the mRNA injection method. Potential applications to structure-function studies and expression cloning are discussed.  相似文献   

14.
K Sumikawa  I Parker  T Amano    R Miledi 《The EMBO journal》1984,3(10):2291-2294
Poly(A)+ mRNA extracted from the electric organ of Torpedo was fractionated by sucrose density gradient centrifugation. After injection into Xenopus oocytes one mRNA fraction induced the appearance of chloride channels in the oocyte membrane. Many of these channels were normally open, and the ensuing chloride current kept the resting potential of injected oocytes close to the chloride equilibrium potential. When the membrane was hyperpolarized, the chloride current was reduced. A separate fraction of mRNA induced the incorporation of acetylcholine receptors into the oocyte membrane. When translated in a cell-free system this fraction directed the synthesis of the alpha, beta, gamma, and delta subunits of the acetylcholine receptor. In contrast, the mRNA fraction that induced the chloride channels caused the synthesis of the delta subunit, a very small amount of alpha, and no detectable beta or gamma subunits. This suggests that the size of the mRNA coding for the chloride channel is similar to the preponderant species of mRNA coding for the delta subunit of the acetylcholine receptor.  相似文献   

15.
Experiments were performed on chronically denervated frog sartorius muscles to determine the permeability of the acetylcholine-activated channels to organic cations. The membrane voltage response to bath-applied acetylcholine was measured with the moving electrode when the muscles were bathed in normal Ringer and in Ringer in which all of the Na+ had been replaced with an organic cation. The magnitude of the maximum voltage response was used to estimate the permeability of the channel to the organic cation. These results were compared with those which have been reported for innervated frog sartorius muscles (Maeno, Edwards, and Anraku, 1977). It is concluded that the permeability to a wide range of organic cations is virtually identical for the extrajunctional channels which develop following denervation and the channels which are localized at the junctional region of innervated muscles.  相似文献   

16.
Toxin-L a lethal neuromuscular blocking agent was isolated from the venom of the scorpion, Lychas laevifrons (Pocock), by the CM-cellulose ion-exchange chromatography. It was a homogenous, thermolabile and low molecular weight protein. The toxin produced irreversible blockade of indirect stimulation induced twitch responses on innervated rat phrenic nerve-diaphragm and chick biventer cervicis preparation. The toxin did not produce any contractile response on toad rectus abdominis muscle preparation. On chronically denervated rat diaphragm, the toxin failed to alter the responses induced by direct stimulation, exogenous acetylcholine, potassium chloride and caffeine. Acetylcholine and carbachol induced contractions on isolated chick biventer cervicis remained unaltered by the toxin. Neostigmine failed to alter toxin induced neuromuscular blockade on innervated rat diaphragm. The toxin released a significant amount of acetylcholine from innervated rat diaphragm. It may be concluded that the toxin acts presynaptically through the release of acetylcholine, thereby producing neuromuscular blockade.  相似文献   

17.
Considerable disagreement exists between results reported by various authors for lipid composition and enzyme activity in purified muscle membrane fractions presumed to be sarcolemma, although an explanation for these discrepancies has not been presented. We have prepared muscle light surface membrane fractions of comparable density (1.050--1.120) by a low-salt sucrose method and by an LiBr-KCl extraction procedure and compared them for density profile, total lipid and cholesterol content, protein composition and ATPase activity. In addition, sodium channels characteristic of excitable membranes have been quantitated in each preparation using [3H]saxitoxin binding assays, and the density of acetylcholine receptors determined in fractions from control and denervated muscle using alpha-[125I]bungarotoxin. Although both fractions contain predominantly surface membrane, the LiBr fraction consistently shows the higher specific activity of p-nitrophenylphosphatase, higher free cholesterol content, and higher density of sodium channels and acetylcholine receptors. The density distribution of sodium channels appears uniform throughout both fractions. Quantitative differences were seen between sodium dodecyl sulfate polyacrylamide gel electrophoresis patterns of membrane proteins from the two preparations although most bands are represented in both. A majority of the low-salt sucrose light membrane proteins were accessible in varying degrees to labelling with diazotized diiodosulfanylic acid in intact muscle. These results suggest that light surface membrane fractions may be mixtures of sarcolemma and T-tubular membranes. Using our preparative methods, the LiBr fraction may contain predominantly sarcolemma while low-salt sucrose light membranes may be enriched in T-tubular elements.  相似文献   

18.
R Miledi  I Parker    K Sumikawa 《The EMBO journal》1982,1(11):1307-1312
Poly(A)+ mRNA, extracted from denervated skeletal muscles of the cat, directs the synthesis of acetylcholine receptors in Xenopus laevis oocytes. The receptors are inserted in the oocyte membrane where they form acetylcholine receptor-channel complexes which have properties like those of the native receptors in the muscle membrane.  相似文献   

19.
A serum factor from patients with myasthenia gravis which inhibited the binding of 125I-labeled alpha-bungarotoxin to acetylcholine receptor extracted with Triton X-100 from rat muscle has been studied in detail. The inhibitory activity was localized to the IgG fraction based upon the fractionations by sodium sulfate precipitation and DEAE chromatography as well as reaction with anti-IgG globulin. The myasthenic globulin inhibited toxin binding to receptors extracted from degenerated muscle but did not inhibit toxin binding to normal junctional receptors. At saturation levels of myasthenic globulin, the number of denervated acetylcholine receptors available for toxin binding was reduced approx. 50 percent. The myastehnic globulin was found to bind to denervated acetylcholine receptors but not to normal acetylcholine receptors by a radioimmunoassay technique in which myasthenic globulin incubated with 125I-labeled alpha bungarotoxin-receptor complexes was precipitated by anti-IgG serum. The globulin binding was saturable over the same range as inhibition of toxin binding. The data suggest that the myasthenic IgC binds to a site on the receptor complex juxtaposed to the acetylcholine receptor site. The myasthenic globulin appears to be a useful probe for investigation differences between acetylcholine receptors extracted from normal and denervated muscle and for investigating the pathogenesis of myasthenia gravis.  相似文献   

20.
To test the hypothesis that synaptic basal lamina can induce synapse-specific expression of acetylcholine receptor (AChR) genes, we examined the levels mRNA for the alpha- and epsilon-subunits of the AChR in regenerating rat soleus muscles up to 17 days of regeneration. Following destruction of all muscle fibres and their nuclei by exposure to venom of the Australian tiger snake, new fibres regenerated within the original basal lamina sheaths. Northern blots showed that original mRNA was lost during degeneration. Early in regeneration, both alpha- and epsilon-subunit mRNAs were present throughout the muscle fibres but in situ hybridization showed them to be concentrated primarily at original synaptic sites, even when the nerve was absent during regeneration. A similar concentration was seen in denervated regenerating muscles kept active by electrical stimulation and in muscles frozen 41-44 hours after venom injection to destroy all cells in the synaptic region of the muscle. Acetylcholine-gated ion channels with properties similar to those at normal neuromuscular junctions were concentrated at original synaptic sites on denervated stimulated muscles. Taken together, these findings provide strong evidence that factors that induce the synapse-specific expression of AChR genes are stably bound to synaptic basal lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号