首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Summary. The Cordova gabbro of southern Ontario intrudes 1300 Myr old volcanic rocks of the Hastings Lowlands in the Grenville Structural Province. Three distinct vector magnetizations (A, B and C) have been isolated, using a combination of stable endpoints, subtracted vectors from orthogonal vector plots and converging remagnetization circles. The A magnetization, with mean direction D = 294° I =– 55.5° ( k = 42, α95= 5.5°, N = 18 sites), is a high coercivity, high blocking temperature remanence recorded by 49 samples. The B magnetization was isolated in 33 samples and has a mean direction D = 305.5° I =– 1.5° ( k = 24, α95, N = 11 sites). B has lower coercivities and blocking temperatures than A where the two are superimposed. The A and B palaeopoles, 151°E, 10.5°S ( dp = 6°, dm = 8°) and 165.5°E, 24°N ( dp = 5°, dm = 9.5°), fall on the Grenville Track around 900 and 820 Ma respectively. The A and B magnetizations thus date from uplift and cooling following the Grenvillian orogeny. The third magnetization, the C component, has been isolated in 23 samples. Its mean direction is D = 180° I = 27.5° ( k = 18, α95= 10.5°, N = 12 sites). The C is a low coercivity, low blocking temperature overprint of A and B. Its palaeopole, 102°E, 31°N ( dp = 6.5°, dm = 12°), is unlike post-1300 Precambrian poles for cratonic North America but matches Silurian and late Ordovician poles. 40Ar/39Ar plateau ages of 446 and 447 Ma determined by Lopez-Martinez and York for plagioclases from one of the Cordova samples confirm this age assignment. The C magnetization therefore records a previously unrecognized mild thermal or hydrothermal event that occurred in Palaeozoic time, long after the Grenvillian orogeny.  相似文献   

2.
207Pb/206Pb single-grain zircon, 40Ar/39Ar single-grain hornblende and biotite, and 40Ar/39Ar bulk-sample muscovite and biotite ages from the Nelshoogte trondhjemite pluton located in eastern Transvaal, South Africa, show that this granitoid had a protracted thermal history spanning 3213±4  Ma to about 3000  Ma. Whole-rock 40Ar/39Ar ages from cross-cutting dolerite dykes indicate that these were intruded at about 1900  Ma. There is no evidence of this or other, later events significantly affecting the argon systematics of the minerals from the pluton dated by the 40Ar/39Ar method.
  The pluton has a well-defined palaeomagnetic pole which is dated at 3179±18 (2 σ ) Ma by 40Ar/39Ar dating of hornblende. This pole (18°N, 310°E, A 95=9°) yields a palaeolatitude of 0°, significantly different from other Archaean poles from the Kaapvaal Craton. The palaeolatitude difference implies that there was significant apparent polar wander during the Archaean. A second, overprinting magnetization seen in the pluton is also seen in the lower-Proterozoic dolerite dykes, and is consistent with other lower-Proterozoic (2150–1950  Ma) poles for southern Africa.  相似文献   

3.
Summary. 40Ar-39Ar incremental heating studies have been carried out on samples taken from the Tudor Gabbro, Grenville Province, Ontario. In an earlier K-Ar study, these rocks have yielded an isochron age of ∼700 Ma together with very high initial argon ratios. Age spectrum plots on whole-rock samples, in general, display a saddle-shaped character, with two of them exhibiting minima close to 700 Ma. No clear plateaus are observed for these rocks. A hornblende separate records the time ∼1110 Ma at which the stock finally cooled through the ∼590°C isotherm. The Tudor Gabbro was probably intruded into an area undergoing middle-amphibolite facies meta-morphism about 1180 Ma ago. The age spectra of two whole-rock samples together with that of their plagioclase separates, suggest that the stock cooled to ∼200–250°C at about 720 Ma. Slow cooling, averaging about 1°C Ma−1 is indicated for this section of the Grenville Province for the period 1100–700 Ma. If the age of the Tudor Gabbro's palaeomagnetic pole position is taken to be 720 Ma, the Hadrynian Track Hypothesis leads to very high polar wander rates of > 20cm a−1 for the period 820–720 Ma. If this hypothesis is rejected, the average drift rate for this period would be ∼4 cm a−1, in much better agreement with published values of ∼5 cm a−1 for the period 1400–820 Ma.  相似文献   

4.
Summary. One hundred and fifty oriented samples were collected from 12 sites from the Tertiary basalts of Wadi Abu Tereifiya (30.0°N, 32.1° E). After alternating field demagnetization the mean direction of the natural remanent magnetization is, D = 187.9°, I = -20.8° with α95= 5.8°. This yields a palaeopole at 69.4°N, 188.3° E.
Also, 30 oriented samples were collected from two sites from Mandisha in Bahariya Oasis (28.4°N, 28.9° E). After cleaning, the mean direction of the NRM is D = 191.0°, I = 5.2° with α95= 9.9°. This yields a palaeopole position at 58.2°N, 186.7° E.
Besides, the NRM of 70 oriented samples collected from seven dioritic dykes from Wadi Abu Shihat (26.3°N, 33.2° E) was found to have a mean direction, D = 142.0°, I = -0.3°, which leads to a palaeopole position at, 44.9°N, 273.0° E. This agrees with other Mesozoic pole positions from Africa.  相似文献   

5.
40Ar/39Ar whole-rock and alkali feldspar ages demonstrate that dioritic to monzonitic dykes from Bøverbru and Lunner belong to the youngest recorded magmatic activity in the Oslo Rift region, southeast Norway. These dykes represent the terminal phase of rift and magmatic activity in the Oslo Graben, at the dawn of the Triassic (246–238 Ma).
  The Bøverbru and Lunner dyke ages are statistically concordant. However, the palaeomagnetic signature of the Bøverbru dyke is complex, and directions from the margins and the interior of the dyke differ in polarity. Therefore, the new Early Triassic palaeomagnetic pole for Baltica (Eurasia) is exclusively based on the less complex Lunner dykes and contacts (palaeomagnetic pole: latitude=52.9°N, longitude=164.4°E, dp / dm =4.5 ° /7.3°). The early Triassic palaeomagnetic pole [mean age: 243±5 Ma (2 σ )] is slightly different from the Upper Carboniferous–Permian (294–274 Ma) and Kiaman-aged poles from the Oslo Rift.  相似文献   

6.
The potential use of 40Ar/39Ar thermochronologic data from K-feldspars in reconstructing basin thermal history has been evaluated using the example of the Warburton/Cooper/Eromanga Basin, Australia's largest onshore oil- and gas-producing basin. Results from 40Ar/39Ar step-heating experiments reveal details of the evolution of the basin system, including the following: (1) the operation of high geothermal gradient regimes during the earliest basin evolution, suggesting that basin formation was active rather than passive; (2) slow cooling from a Permo-Triassic temperature peak of at least 250–300°C; (3) a rise in thermal gradients to contemporary bottom hole temperatures in the last 5–10 Myr; and (4) spatially variable recrystallization events between 100 and 50 Ma and at around 20 Ma. Initial microstructural observations serve as a useful predictor of the quality and nature of the obtainable age information. Data from 'pristine' K-feldspars may constrain the peak temperature conditions experienced in the basin, the basin's early thermal history and also any recent changes in thermal gradient. Contrasting data from texturally modified K-feldspars may constrain times of thermal transients and/or fluid flow, with the preferred interpretation that K-feldspars recrystallize in response to such events. The Warburton/Cooper/Eromanga Basin example suggests that the 40Ar/39Ar technique may serve as a useful adjunct to apatite and zircon fission track analysis and conventional organic maturation indices in basin thermal history analysis.  相似文献   

7.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

8.
A N-S trending, narrow zone of crystalline basement occurs from Biscayarhalvøya to Holtedahlfonna in northwestern Spitsbergen and is composed of various metasedimentary and igneous rocks, including granites. Previous isotopic age determinations on these rocks are by the K-Ar. Rb-Sr, 40Ar/39Ar and conventional zircon U-Pb method and yielded the Caledonian and Grenvillian ages. The single-grain zircon Pb evaporation method has recently been applied to solve complex problems and this is the first report by the method.
A granitic rock, syntectonically intruded into the phyllitic metasediments of the Biscayarhuken formation, which is the uppermost lithotectonic unit in the metamorphic rocks of the zone, was dated on four zircon grains, yielding a narrow age range from 955 ± 4 to 968 ± 9 Ma in average. This age of ca. 960 Ma is considered to be the age of intrusion, based on the occurrence and zircon morphology, which is roughly simultaneous with the formation of the phyllitic cleavages of the surrounding metasediments. The data obtained imply that the Caledonian events did not reset the Pb isotope system of zircon and major metamorphism occurred during the Grenvillian time in the Biscayarhuken formation, accordingly, the protolith age of the metasediments is Mesoproterozoic.  相似文献   

9.
North-west Spitsbergen consists of a complex of Caledonian and Grenvillian crystalline rocks, situated at the north-west corner of the Barents Shelf. The aim of this study is to understand the extent of pre-Caledonian basement rocks and their protoliths. Micas and zircon grains from six rocks from north-west Spitsbergen have been dated by the 40Ar/39Ar and single-zircon Pb-evaporation methods. Two grey granites yielded Late Caledonian mica 40Ar/39Ar and zircon ages of ca. 420-430 My, with inherited zircon grains as old as 1725 My. Zircon grains from a gneissose granite xenolith in a grey granites gave crystallization ages of ca. 960 My; some grains from a migmatite neosome show similar ages. Zircon grains yielding Archean and late Palaeoproterozoic ages (1600-1800 My) are interpreted as xenocrysts of detrital origin. The youngest ages obtained from detrital zircon grains from a greenschist facies quartzite of the Signehamna unit are ca. 1800 My. Similar schists are included as xenoliths in the 960 My old gneissose granite; therefore, the sedimentary protoliths of the unit are Mesoproterozoic. The dating results suggest a significant tectonothermal event during Grenvillian time; subsequent Caledonian events had less extensive thermal effects. However, it is still a matter of debate whether Grenvillian or Caledonian metamorphism produced the majority of the migmatites. A large population of zircon grains with Late Palaeoproterozoic ages suggests a wide surface exposure of rocks of this age in the source area, with some Archean zircons.  相似文献   

10.
We present new palaeomagnetic and isotopic data from the southern Victoria Land region of the Transantarctic Mountains in East Antarctica that constrain the palaeogeographic position of this region during the Late Cambrian and Early Ordovician. A new pole has been determined from a dioritic intrusion at Killer Ridge (40Ar/39Ar biotite age of 499 ± 3 Ma) and hornblende diorite dykes at Mt. Loke (21°E, 7°S, A 95 = 8°, N = 6 VGPs). The new Killer Ridge/Mt. Loke pole is indistinguishable from Gondwana Late Cambrian and Early Ordovician poles. Previously reported palaeomagnetic poles from southern Victoria Land have new isotopic age constraints that place them in the Late Cambrian rather than the Early Ordovician. Based upon the new palaeomagnetic and isotopic data, new Gondwana Late Cambrian and Early Ordovician mean poles have been calculated.  相似文献   

11.
Summary. The geopotential is usually expressed as an infinite series of spherical harmonics, and the odd zonal harmonics are the terms independent of longitude and antisymmetric about the equator: they define the 'pear-shape' effect. The coefficients J 3, J 5, J 7, … of these harmonics have been evaluated by analysing the variations in eccentricity of 28 satellite orbits from near-equatorial to polar. Most of the orbits from our previous determination in 1974 are used again, but three new orbits are added, including two at inclinations between 62° and 63°, which have been specially observed for more than five years by the Hewitt cameras. With the help of the new orbits and revised theory, we have obtained sets of J -coefficients with standard deviations about 40 per cent lower than before. A 9-coefficient set is chosen as representative, and is as follows (all × 109): J 3=– 2530 ± 4, J 5=–245 ± 5, J 7=–336 ± 6, J 9=–90 ± 7, J 11= 159 ± 9, J 13=–158 ± 15, J 15=– 20 ± 15, J 17=– 236 ± 14, J 19=– 27 ± 19. With this set of values, the pear-shape asymmetry of the geoid (north polar minus south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes above 86°. The geoid profile and predicted amplitude of the oscillation in eccentricity are compared with those from other sources.  相似文献   

12.
We report on the palaeomagnetism of the gabbroic Cape St Mary's sills of the Avalon Peninsula of Newfoundland, which have previously yielded a 441±2  Ma U–Pb baddeleyite age (latest Ordovician or earliest Silurian). At 12 of 19 sites, stepwise alternating-field or thermal demagnetization isolated a stable characteristic remanence carried by magnetite. This remanence is shown to pre-date Early Devonian folding of the sills. Although a baked-contact test was inconclusive, the positive fold test and the low grade of metamorphism of the sills (prehnite–pumpellyite facies) make it likely that the characteristic remanence is primary. The tilt-corrected site-mean characteristic remanence has a declination of 343° and an inclination of −51° ( k =25, α 95=9°), yielding a ∼440  Ma palaeopole at 10°N, 140°E ( dm =12°, dp =8°) for West (North American) Avalonia. The corresponding ∼440  Ma palaeolatitude for the Avalon Peninsula is 32°S±8°. The only other West Avalonian palaeolatitude determination from rocks that could be of similar age is from the Dunn Point volcanics of Nova Scotia; their more southerly palaeolatitude of 41°S±5° suggests that they are significantly older than 440  Ma, a possibility that we recommend testing with U–Pb dating. Although no ∼440  Ma palaeolatitude determinations are available for East Avalonia (parts of southern Britain and Ireland), interpolating between mid-Ordovician and mid-Silurian determinations gives an estimate of ∼25°S. This is consistent with our Cape St Mary's result and, if the Iapetus Ocean closed orthogonally, with a narrow (∼1000  km) Iapetus Ocean of approximately east–west orientation between Avalonia and Laurentia by 440  Ma.  相似文献   

13.
Summary. Palaeomagnetic investigations are reported from 24 sites in the Proterozoic Zig-Zag Dal Basalt Formation and 12 sites in the Midsominersø Dolerites of eastern North Greenland. The Zig-Zag Dal Basalt is a typical tholeiitic flood basalt sequence, and dolerite intrusions in the underlying sandstones are thought to be genetically related to the basalts.
After a detailed AF demagnetization programme 19 sites in the basalts and 10 sites in the dolerites reveal one stable component of magnetization, probably of TRM and/or CRM origin residing in small single domain titano-magnetite grains. The degree of anisotropy has not affected the direction of the remanent magnetization. The maximum axis of the anisotropy ellipsoid is parallel to the flow direction of the magma, whereas the minimum axis is perpendicular to the flow plane.
Only one polarity of the geomagnetic field was found. The mean palaeomagnetic pole positions for the two rock types are not significantly different (basalt: 12.2°S, 62.8°E with A 95= 3.8°; dolerites: 6.9°S, 62.0°E with A 95 = 5.1°). After correction for Phanerozoic drift of Greenland the two mean poles compare closely to a relevant North American APW-curve for 1250–1350 Ma, in good agreement with Rb-Sr isochron ages of 1250 Ma obtained for the intrusives. The palaeogeographical position of Greenland was near equator with the major geographical axis orientated E-W.  相似文献   

14.
Summary. Palaeomagnetic results are reported from 111 localities in meta- morphic rocks from the Southern Zone of the Lewisian Complex and 12 sites from similar terrain on the island of Lewis and Harris. These rocks were magnetized during slow uplift following the ca. 1800 Ma Laxfordian tectonic/ magmatic episode. The Southern Zone experienced diachronous uplift and there is a transition from predominantly positive NW remanence directions in the north to shallow negative NW directions in the south. More prolonged metamorphism in the south correlates with a transition from magnetite/ sulphide to magnetite/hematite assemblages. The relict Ruadh Mheallan zone relatively unaffected by Laxfordian tectonism preserves a (A1) remanence D = 82°, I = 65° which is sporadically recovered as high blocking temperature component in areas bordering this zone. Elsewhere, the migration of field directions is summarized as mean directions (A3) D = 323°, I = 44°, (A4) D = 314°, I = 14° and (A5) D = 313°, I = - 11° which appear to follow on sequentially from the predominant A2 direction ( D = 286°, I = 55°) observed in the Central Zone of the Lewisian Complex. The remanence directions are linked to a first approximation to the K-Ar hornblende ages and imply a migration of the ambient field direction through ca. 110° during an interval between 1 × 107 and 2 × 108× yr at about 1600Ma; the weight of the evidence suggests that the interval represented is between 0.5 and 1 × 108× yr.
The Lewisian A2—A5 directions yield palaeopoles which follow on from 1800–1700 Ma magnetizations from the Hudsonian terrains of Greenland and North America and overlap with the youngest record from these regions on the pre-drift reconstruction; collectively the data define part of a large apw loop.  相似文献   

15.
New U–Pb zircon and 40Ar–39Ar K-feldspar data are presented for syn-sedimentary volcanogenic rocks from the Neoproterozoic Maricá Formation, located in the southern Brazilian shield. Seven (of nine) U–Pb sensitive high-resolution ion microprobe analyses of zircons from pyroclastic cobbles yield an age of 630.2±3.4 Ma (2σ), interpreted as the age of syn-sedimentary volcanism, and thus of the deposition itself. This result indicates that the Maricá Formation was deposited during the main collisional phase (640–620 Ma) of the Brasiliano II orogenic system, probably as a forebulge or back-bulge, craton-derived foreland succession. Thus, this unit is possibly correlative of younger portions of the Porongos, Brusque, Passo Feio, Abapã (Itaiacoca) and Lavalleja (Fuente del Puma) metamorphic complexes. Well-defined, step-heating 40Ar–39Ar K-feldspar plateau ages obtained from volcanogenic beds and pyroclastic cobbles of the lower and upper successions of the Maricá Formation yielded 507.3±1.8 Ma and 506.7±1.4 Ma (2σ), respectively. These data are interpreted to reflect total isotopic resetting during deep burial and thermal effects related to magmatic events. Late Middle Cambrian cooling below ca . 200 °C, probably related to uplift, is tentatively associated with intraplate effects of the Rio Doce and/or Pampean orogenies (Brasiliano III system). In the southern Brazilian shield, these intraplate stresses are possibly related to the dominantly extensional opening of a rift or a pull-apart basin, where sedimentary rocks of the Camaquã Group (Santa Bárbara and Guaritas Formations) accumulated.  相似文献   

16.
A palaeomagnetic study of the Elgee Formation red siltstones and shales in the Palaeoproterozoic Kimberley Basin of northwestern Australia has been carried out. All seven sampling sites revealed an extremely stable magnetic remanence carried by haematite. The age of the formation is confined by precise SHRIMP U–Pb ages of early diagenetic xenotime from rocks both above and below it to be 1704 + 7/−14 Ma, but this may represent a minimum age. The youngest detrital zircon grains in the underlying formation provide a maximum age of 1786 ± 14 Ma for the formation. The extreme stability of the remanence, the dissimilarity of the remanent direction from expected younger palaeomagnetic directions, and the lack of regional overprint in the 1790 ± 4 Ma Hart Dolerite just north of the study region support a primary origin for the remanence. A marginally positive fold test also supports a primary origin. The mean direction of D = 92.2°, I = 14.9°, α 95 = 6.4° gives a palaeopole at 4.4°S, 210.0°E with dp = 3.3°, dm = 6.5°. This pole, a previously reported palaeopole from the Hart Dolerite and ca. 1700 Ma overprint poles from the Pilbara Craton all agree with palaeopoles of similar ages from the McArthur Basin of northern Australia. Palaeomagnetic results thus suggest that the North and West Australian cratons were possibly joined together by approximately 1.7 Ga.  相似文献   

17.
The Centralian Superbasin in central Australia is one of the most extensive intracratonic basins known from a stable continental setting, but the factors controlling its formation and subsequent structural dismemberment continue to be debated. Argon thermochronology of K-feldspar, sensitive to a broad range of temperatures (∼150 to 350 °C), provides evidence for the former extent and thickness of the superbasin and points toward thickening of the superbasin succession over the now exhumed Arunta Region basement. These data suggest that before Palaeozoic tectonism, there was around 5–6 km of sediment present over what is now the northern margin of the Amadeus Basin, and, if the Centralian superbasin was continuous, between 6 and 8 km over the now exhumed basement. 40Ar/39Ar data from neoformed fine-grained muscovite suggests that Palaeozoic deformation and new mineral growth occurred during the earliest compressional phase of the Alice Springs Orogeny (ASO) (440–375 Ma) and was restricted to shear zones. Significantly, several shear zones active during the late Mesoproterozoic Teapot Orogeny were not reactivated at this time, suggesting that the presence of pre-existing structures was not the only controlling factor in localizing Palaeozoic deformation. A range of Palaeozoic ages of 440–300 Ma from samples within and external to shear zones points to thermal disturbance from at least the early Silurian through until the late Carboniferous and suggests final cooling and exhumation of the terrane in this interval. The absence of evidence for active deformation and/or new mineral growth in the late stages of the ASO (350–300 Ma) is consistent with a change in orogenic dynamics from thick-skinned regionally extensive deformation to a more restricted localized high-geothermal gradient event.  相似文献   

18.
Summary. From nine Upper Cretaceous—Lower Tertiary (85 ± 5–66 ± 5 Ma) volcanic hills in Central Argentina (33°S, 65°W), 26 hand samples were collected yielding a palaeomagnetic pole at 45°E 70°s ( A 95 = 12.1°; k = 13.6; N = 12) after AC cleaning. Three sites show normal and nine reversed polarity. This pole is close to the pole for the late Cretaceous (69 Ma) Andacolo Series.  相似文献   

19.
Rocks from the Massif de la Serre in the French Jura (latitude: 47.3°N longitude: 5.6°E) belonging to an ignimbritic assemblage dominated by vitrophyric rhyolites, and whose age of formation is probably Permian (Autunian to Saxonian) have been studied by applying thermal and alternating field demagnetization. the characteristic magnetization has a mean direction derived from 89 samples of D= 170°, I = - 16°, k = 26.2°, α95= 3° and a corresponding north palaeopole at 41°N, 172°E, A 95= 5°. the pole, which is very close to the Permian European poles, can thus be considered as a new contribution. Some samples are found to carry a unique normal polarity magnetization, others carry both normal and reverse polarities. It therefore seems that, similar to Permian series in the USSR, these west European rocks have registered a normal event in the Kiaman interval. From a structural point of view, we may conclude that during the Alpine tectonic phases the Massif de la Serre has not been subjected to substantial rotation.  相似文献   

20.
Approaches to Modelling the Surface Albedo of a High Arctic Glacier   总被引:1,自引:0,他引:1  
Broadband surface albedo measurements, made during the summer melt season at three weather stations on John Evans Glacier (79°40 ' N, 74°00 ' W), varied strongly with the solar zenith angle ( θ z ). Tests were carried out to assess the impact of diurnal variations in surface albedo on seasonal net shortwave radiation ( K * ) totals. Removing the diurnal signal from albedo measurements by daily averaging of hourly measurements, or by applying midday measurements to all hours of the day, changed K * by up to 16%. Ignoring measurements made at θ z & 75°, to account for measurement (cosine) error at high θ z , decreased K * by between 5 and 18%. Given the sensitivity of K * to diurnal patterns in surface albedo, experiments were carried out with two albedo models. One model accounted for albedo variations with θ z and one did not. The model driven by θ z , when implemented within a surface energy balance model for John Evans Glacier, produced better melt estimates. This suggests that diurnal variations in surface albedo should be accounted for in energy balance models of glacier melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号