首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The westward evolution of an open-sea anticyclonic eddy along the western Algerian Basin is shown, for the first time, by means of 15 buoy trajectories and remote sensing observations. For 3 months, the buoy trajectories described several anticyclonic loops in periods of 4–21 days. The eddy's movement, translation, and rotation were separated with a kinematic model, resulting in a mean translation speed of 2 km/day, which fits the self-propulsion speed predicted on theoretical models for isolated eddies on a beta plane. Fluctuations in translation speed were associated with advection of the mean flow and topographic interactions. Both mechanisms changed the eddy's horizontal shape from circular to elliptical, inducing fluctuations in its swirl velocity and solid-body rotation. The initial stage of the eddy is an isolated asymmetric dipole, comprised by a small cyclone and a large anticyclone, the latter generated from a frontal instability, which under the Coriolis term acquires anticyclonic relative vorticity. During its first days of life, the anticyclonic eddy was shallow Ro=0.9 and small (diameter less than 50 km). Later on, it reached a diameter of 150 km and a vertical structure of 3 km (Ro=0.1). A retrospective analysis with infrared images shows that the eddy's generation took place at about 3–4°E. Then, the eddy completed a counterclockwise circuit never before reported in other studies and ended up at the entrance of the Algerian Basin, where the interaction with the topography and the coastal instability induced its decay. The eddy's life span was 10 months. Computations of the heating rate following clusters of buoy trajectories show fluctuations throughout the eddy's journey, induced by advection and a seasonal warming.  相似文献   

2.
We present hydrographic data for several sections located along the African coastline and off Cape Ghir, carried out at times of weak surface winds (October 1995 and September 1997). The main sections are near the continental slope, at mean distances between 100 and 150 km from the coastline. North of Cape Ghir (31°N) the geostrophic transport (referenced to 650 m) of North Atlantic Central Water through these sections is 3.7 and 2.0 Sv for 1995 and 1997, respectively. This confirms that a major fraction of the water transport by the Canary Current flows east, into the continental slope off northwest Africa, at latitudes above Cape Ghir. Most of this flow continues south past Cape Ghir, along the coast and probably through the eastern passages of the Canary Archipelago. A significant fraction, however, may escape through surface Ekman transport (0.3–0.5 Sv during the early fall season) and by offshore flow at Cape Ghir (1.1 Sv in September 1997, referenced to 650 m). Despite the weak winds the Cape Ghir filament was clearly visible, characterized by localized coastal upwelling associated to a cyclonic shallow structure and cold (and fresh) waters stretching offshore as a very shallow feature (50–100 m deep). The satellite images show that the surface temperature field is highly variable, in rapid response to the surface winds, always with a core region of relatively cold water and commonly with one or two associated eddies. Our results support the existence of two recirculation cells in the area: a horizontal one that connects the interior eastern boundary currents with the coastal region and a vertical one related to both wind-induced and filament upwelling. The data also show a salinity subsurface maximum at the root of the filament, linked to water inflow from northern latitudes, and a subsurface anticyclonic eddy over the Agadir canyon, likely related to the poleward slope undercurrent.  相似文献   

3.
The shelf-slope front (SSF) is a continuous shelf-break front running from the Tail of the Grand Banks to Cape Hatteras, North Carolina, separating colder and less-saline continental shelf waters from warmer and more saline slope waters. Time series containing mean monthly SSF positions were produced along each of 26 longitude lines between 75° and 50°W by workers located at Bedford Institute of Oceanography by digitizing individual frontal charts and computing mean monthly latitudinal positions over a 29-year (1973–2001) period. After removing seasonal variability at each longitude, interannual variability (IAV) of the SSF position at each longitude was computed as the annual mean of all monthly SSF position anomalies for each year over the 29-year period. Despite some missing data, a longitude-time plot reveals alternating bands of offshore (late-1970s, late-1980s, late-1990s) and onshore (early-1980s, early-1990s, early-2000s) annual mean SSF anomaly values, exhibiting a period of approximately 10 years. Annual mean SSF anomaly amplitudes are largest in the east, with maxima of O (± 100 km) located east of 60° W for years when data are available. Empirical orthogonal function (EOF) modes 1–4 (accounting for > 90% of the variance) form a set of basis functions that describe the SSF anomaly data and allow reconstruction of the entire data set since missing data are relatively few (14%). A complex empirical orthogonal function (CEOF) analysis using the “reconstructed” data reveals a wavelength scale of approximately 20° of longitude, a distance nearly equal to the entire study domain, along with steady, westward phase propagation of SSF anomalies over approximately the same distance. Speed calculations for the westward-propagating features yield a value of approximately 1.2 to 2.4 cm s− 1 (1 to 2 km d− 1), with annual mean SSF anomalies thus requiring about 4 years to propagate from the Tail of the Grand Banks in the east to Cape Hatteras, North Carolina, in the west. This propagation speed and the timing of the SSF positional anomalies at the Tail of the Grand Banks for the 29-year study period are in agreement with speeds computed for the propagation of quasi-decadal salinity anomalies through the Labrador Sea and the time of their arrival at the Tail of the Grand Banks. The small westward SSF anomaly propagation speed is an order of magnitude smaller than the associated currents, in agreement with a highly damped flow-through system originating from both Davis Strait and the West Greenland Current as discussed by other workers. Observations from both southern and northern portions of the study domain, within both continental shelf and slope waters, show that interannual changes in the volume of shelf water along with shelf water bulk properties exhibit a strong relationship with IAV of the SSF position over long time periods.  相似文献   

4.
In the Mediterranean Sea, where the mean circulation is largely unknown and characterized by smaller scales and less intensity than in the open ocean, the interpretation of altimetric Sea Level Anomalies (SLA) is rather difficult. In the context of operational systems such as MFS (Mediterranean Forecasting System) or MERCATOR, that assimilate the altimetric information, the estimation of a realistic Mean Dynamic Topography (MDT) consistent with altimetric SLA to be used to reconstruct absolute sea level is a crucial issue. A method is developed here to estimate the required MDT combining oceanic observations as altimetric and in-situ measurements and outputs from an ocean general circulation model (OGCM).In a first step, the average over the 1993–1999 period of dynamic topography outputs from MFS OGCM provides a first guess for the computation of the MDT. Then, in a second step, drifting buoy velocities and altimetric data are combined using a synthetic method to obtain local estimates of the mean geostrophic circulation which are then used to improve the first guess through an inverse technique and map the MDT field (hereafter the Synthetic Mean Dynamic Topography or SMDT) on a 1/8° resolution grid.Many interesting current patterns and cyclonic/anticyclonic structures are visible on the SMDT obtained. The main Mediterranean coastal currents are well marked (as the Algerian Current or the Liguro–Provenço–Catalan Current). East of the Sicily channel, the Atlantic Ionian Stream divides into several main branches crossing the Ionian Sea at various latitudes before joining at 19°E into a unique Mid-Mediterranean Jet. Also, strong signatures of the main Mediterranean eddies are obtained (as for instance the Alboran gyre, the Pelops, Ierapetra, Mersa-Matruh or Shikmona anticyclones and the Cretan, Rhodes or West Cyprius cyclones). Independent in-situ measurements from Sea Campaigns NORBAL in the North Balearic Sea and the North Tyrrhenian Sea and SYMPLEX in the Sicily channel are used to validate locally the SMDT: deduced absolute altimetric dynamic topography compares well with in-situ observations. Finally, the SMDT is used to compute absolute altimetric maps in the Alboran Sea and the Algerian Current. The use of absolute altimetric signal allows to accurately follow the formation and propagation of cyclonic and anticyclonic eddies in both areas.  相似文献   

5.
Three Argos buoy-years of Lagrangian data in westward-moving cyclonic eddies, or Storms, near 32.5°N, together with hydrographic measurements, have shown that Storms move westward at nearly 3 km day−1. Water in eddies can be trapped and moved westward by advection within the eddy or by phase propagation of the eddy pattern, so we cannot say that the flow field (or Eulerian mean) is 3 km day−1 westward. Two moorings (155 and 156) deployed in the Storm Corridor have provided a further 8 instrument-years of Eulerian data. The temperature and current records confirmed that two Storms a year passed each mooring over the 2-year measurement period. As expected, there is a lag of 1.3 month at mooring 155 (which is 102 km to the west of mooring 156) with respect to conditions at mooring 156. The progressive vector diagrams (PVDs) derived from the current meter records exhibit fairly regular X (east or zonal) and Y (north or meridional) displacement scales that repeat with semi-annual periodicity (SAP). The dominant current signal is the north component of the SAP, which reaches an amplitude of 18 cm s−1 for the upper layer or near surface current record (242-m depth). The geostrophic north component values derived from altimetry were in good agreement with the upper layer current meter measurements. The large north component amplitude was not interpreted as evidence for Rossby Waves but rather due to the passage of nine eddies (eight complete) of alternate sign (cyclonic, anticyclonic) passing the mooring rigs during the 2-year deployment period. The Y scale shows that the near surface characteristic or mean maximum azimuthal speed is about 35 cm s−1 for cyclonic eddies or Storms, and that this value is reduced to 4 cm s−1 at 1400-m depth. The residual or mean Eulerian currents range from 8 cm s−1 for the upper layer currents to 1 cm s−1 for the deeper currents at 1400-m depth and are predominantly westward. Simple theoretical considerations and idealised numerical simulations show that the mean westward Eulerian current depends markedly on whether the eddy centres pass to the north or south of the rigs. This raises the question as to what do we mean by Eulerian residual currents, even for relatively long records (2 years). It is shown that the strong near surface westward current (6 km day−1) measured at mooring 155 is largely due to a westward-moving eddy field with variable centre offsets. The magnitude of the near surface east–west component of flow was estimated as eastward at 2 cm s−1. The north–south component of mean flow was southward at 2 cm s−1. The deeper records gave a weak westward flow of 1 cm s−1 but did not show a significant southward component for the mean Eulerian flow field. 7.4 float-years of Lagrangian ALACE data in the Subtropical Front region near 740 dbar gave mean east–west flows that were <0.5 cm s−1. Overall, it is shown that the eddy structures propagate westward mainly by phase propagation (i.e. a westward-moving pattern with no westward advection for the current meter to measure), though plane Rossby Wave dynamics appeared inappropriate. Theoretical and modeling considerations show that a speed of 3-km day−1 westward is too large a value for the self-advection of eddies due to the beta effect.  相似文献   

6.
The seasonal variation of the surface circulation in the Japan/East Sea (JES) and the Tsushima/Korea Straits (TKS) is reviewed and discussed, focusing on mesoscale and submesoscale variabilities.The monsoon modified by coastal geographical features near Vladivostok generates a dipole of vortex off Vladivostok which induces dramatic changes in the surface circulation in the northwest JES, splitting the Subpolar Gyre into two smaller gyres by generating the Vladivostok Dome. Between these two smaller gyres, the Northwest Thermal Front is formed and current reversal is induced along the North Korean coast. The winter monsoon also induces a current reversal along the Sakhalin coast. The volume transport of the surface Subpolar Gyre has two maxima in January and August. The maximum in August is induced by the summer intensification of the Liman-North Korean Cold Current and the shallow and narrow surface coastal jet generated by the sea ice and snow melting. The maximum in January is induced by the northwest monsoon and associated cooling.Salient features in the TKS are the submesoscale variabilities. In the western channel, submesoscale eddies with length scale of about 80 km and time scale of 5–6 days develop in the cold period. On the lee side of the Tsushima Islands, Karman-like vortex pairs are generated in the warm period. Anticyclonic vortices generated at the northern tip of the Tsushima Islands have a time scale of 5 to 8 days, length scale of 35 to 60 km, and propagate toward the JES with a phase speed of 8 cm/s. Cyclonic vortices south of the anticyclonic counter part of the vortex pairs are rather stationary with intermittent occasional propagation toward the east. The development of stratification seems to be necessary for the development of Karman-like vortex pairs.Summarizing the results above, a schematic surface circulation with seasonal change is proposed.  相似文献   

7.
In the summer of 1992, four current meter moorings were deployed in and later retrieved from the Northeast Water (NEW) polynya on the East Greenland Shelf by the USCGC Polar Sea. The moorings provided hourly temperature, salinity and current data for approximately one year. In the NEW, the circulation intensified and steadiness increased during winter. This intensification was most readily observed at 150 m on the southern side of Westwind trough. The surface layer freshened from summer through December due to ice-melt and freshwater runoff mixing down to at least 75 m. From December through early spring, salinity increased probably due to brine rejected during ice formation. Wintertime events showed water at 75 m with temperatures at the freezing point. Knee Water (KW) was not observed in the current meter data. However, a warmer and fresher than KW watermass was observed at 150 m over the shelf and may result from mixing outside the NEW among KW and the major water masses influencing the region. Polar Water and Atlantic Intermediate Water. Several short-lived events of 3 to 7 days duration perturbed the T-S character at each of the current meters. We believe that these T-S shifts were anticyclonic eddies advecting through the NEW polynya. During such perturbations, T-S values found generally at 75 m were observed at 150 m and T-S values generally at 150 m were observed at 250 m. On the northern side of the Westwind trough, the current meter data provided direct evidence for westward flow into the western extent of the trough at a depth of 250 m. This southwesterly current along the northwest slope of the trough at 250 m is in agreement with the summertime ADCP measurements made in 1992 aboard Polar Sea, and is consistent with the flow inferred from summer hydrography measured from Polarstern in 1993.  相似文献   

8.
Despite its rarity, Dinophysis acuminata is in terms of economic impact, the first toxic algal species along the coasts of Western Europe. It is observed at low levels (< 20 cell l− 1) all the year round but toxic events occur mainly in late spring and summer. D. acuminata ecophysiology is largely unknown due to the inability to culture it. Therefore, standard biomass models based on inorganic nutrition are largely inadequate. Presently, any progress in describing the conditions of population growth of this species will be a step forward to prediction of harmful events at the coast. This species has been observed at increased, albeit low cell densities in retentive eddies located in pycnocline layers. A concentration build-up of one species results from the balance between growth and loss processes, one of the latter being dispersal. The scales of interest for a D. acuminata population are of the order of 10 nautical miles on the horizontal and duration of 10 days, for a reported achievable growth rate of 0.6 day− 1. A three dimensional (3D) hydrodynamical model of the Bay of Biscay has been elaborated to reproduce hydrological structures over the last decade. We attempt here to relate the existence of retentive structures revealed from simulations under realistic forcing conditions and the toxic coastal events recorded in the 10-year time series of the French plankton monitoring network database. The eddies in the coastal area appear to be directly related with the Dinophysis coastal events and they may be a potential effective tool to predict those.  相似文献   

9.
Twelve years (1993–2005) of altimetric data, combining different missions (ERS-1/2, TOPEX/Poseidon, Jason-1 and Envisat), are used to analyse sea level and Eddy Kinetic Energy variability in the Bay of Biscay at different time-scales. A specific processing of coastal data has been applied, to remove erroneous artefacts. Likewise, an optimal interpolation has been used, to create a series of regional Sea Level Anomaly maps, merging data sets from two satellites.The sea level presents a trend of about 2.7 mm/year, which is within the averaged values of sea level rise in the global ocean. Frequency spectra show that the seasonal cycle is the main time-scale affecting the sea level and Eddy Kinetic Energy variability. The maximum sea level occurs in October, whilst the minimum is observed in April. The steric effect is the cause of this annual cycle. The Northern French shelf/slope presents intense variability which is likely due to internal tides. Some areas of the ocean basin are also characterised by intense variability, due to the presence of eddies.The Eddy Kinetic Energy, in turn, is higher from December to May, than during the rest of the year and presents a weak positive trend from April 1995 to April 2005. Several documented mesoscale events, occurring at the end of 1997 and during 1998, are analysed. Altimetry maps prove to be a useful tool to monitor swoddy-like eddies from their birth to their decay, as well as the inflow of seasonal slope water current into the southeastern corner of the Bay of Biscay.  相似文献   

10.
The Agulhas Current with its retroflection and attendant eddy-shedding is the cause of some of the greatest mesoscale variability in the ocean. This paper considers the area to the south and east of Madagascar, which provides some of the source waters of the Agulhas Current, and examines the propagating sea surface height signals in altimetry and output from a numerical model, OCCAM. Both show bands of variability along the axis of the East Madagascar Current (EMC) and along a zonal band near 25°S. Sequences of images plus associated temperature data suggest that a number of westward-propagating eddies are present in this zonal band. The paper then focuses on the region to the south of the island, where ocean colour and infra-red imagery are evocative of an East Madagascar Retroflection. The synthesis of data analysed in this paper, however, shows that remotely observed features in this area can be explained by anticyclonic eddies moving westward through the region, and this explanation is consistent with numerical model output and the trajectories of drifting buoys.  相似文献   

11.
The dynamics of the coastal ocean along the southeastern coast of Africa is dominated by a strong and intense western boundary current, the Agulhas Current. With a near-uniform, narrow continental shelf and a steep shelf slope that stabilizes this current, the trajectory of the Agulhas exhibits great stability. The only substantial perturbation occurs with the irregular passage of a Natal Pulse, a soliton meander. The initiation of this meander at the Natal Bight is due to a barotropic instability when the intensity of the landward border of the current exceeds a certain threshold value. This may come about with natural fluctuations in the current or with the adsorption of deep-sea eddies onto the current. Under a climate change scenario of altered wind stress curl over the South Indian Ocean it is conceivable that the threshold for the triggering of a Natal Pulse will occur more frequently. This will lead to a situation where the current axis on average lies further offshore. The possible consequences of such a situation on the rainfall of the coast, on the ecology of estuaries and the coastal ocean, and on the socio-economics of the region is discussed.  相似文献   

12.
A dynamical method of initializing the primitive equations is tested and used to diagnose the three-dimensional circulation associated with jets and eddies as found in the California coastal transition zone (CTZ). The initialization method, referred to as digital filter initialization (DFI), was recently developed by [Monthly Weather Review 120 (1992) 1019] for use in an intermittent data assimilation system in the atmosphere. The ability of DFI to recover the mesoscale ageostrophic circulation associated with finite amplitude jets and eddies in the ocean is first demonstrated using control data produced by simulations with a primitive equation model. The DFI method is then applied to synoptic hydrographic data collected during several California CTZ surveys in the summer of 1988. The diagnostic results indicate the existence of jets, eddies, and filaments in the CTZ domain with maximum horizontal currents of the order of 0.6 m/s at the surface. Currents associated with such jets and filaments are coherent to a depth of over 500 m. The surface currents associated with a prominent cool filament are generally confluent, and weakly convergent on average, along the 270 km offshore extent of the filament. Meanders in the jet display convergence and downwelling upstream of pressure troughs and divergence and upwelling downstream of the troughs. Maximum vertical velocities at 100 m are of the order of 10 m/day. This result is consistent with independent estimates of subduction rates made from biological studies in this and similar coastal filaments in the CTZ program.  相似文献   

13.
The relationship between the gas transfer velocity and turbulent lengthscales is investigated experimentally in a grid-stirred turbulent flow. The horizontal velocity field at the water surface is measured using particle image velocimetry (PIV). The gas transfer velocity for oxygen is obtained through reaeration experiments. In addition, the gas transfer process by surface-renewal eddies is visualized using laser-induced fluorescence (LIF) technique, in which carbon dioxide is used as the tracer gas. The definition of the Taylor microscale holds that the root-mean-square (RMS) of the surface divergence is expressed by the square root of the turbulent kinetic energy divided by the Taylor microscale. Experimentally obtained data support this scaling. They show the gas transfer velocity to be proportional to the square root of the RMS of the surface divergence. These experimental results imply that the Taylor microscale is an important parameter for gas transfer velocity at the air–water interface. These relations indicate that a nondimensional gas transfer velocity is proportional to the − 1/4 power of a turbulent-macroscale Reynolds number, which is similar to a small-eddy model, assuming that turbulent eddies with the Kolmogorov scale control the gas transfer process. However, this Reynolds number dependence does not necessarily mean the superiority of turbulent eddies with the Kolmogorov scale in the gas transfer. The LIF visualizations in horizontal and vertical planes close to the air–water interface indicate that the horizontal CO2-concentration field has a fine spatial pattern, which resembles that of the surface divergence field, and that surface-renewal motions observed in the vertical plane have a larger lengthscale than the Kolmogorov scale. We infer from both PIV and LIF results that the Taylor microscale is an important lengthscale for air–water gas transfer.  相似文献   

14.
消涡整流片对潜艇马蹄涡的控制及其与辅翼效果的比较   总被引:1,自引:0,他引:1  
潜艇桨盘面伴流是潜艇螺旋桨的进流,其周向均匀性与螺旋桨的振动与噪声直接相关。文章在阐明潜艇主附体结合部马蹄涡对潜艇伴流影响和消涡整流片的作用原理的基础上,针对SUBOFF模型的几何特点,设计了一套消涡整流片,运用分离涡方法计算了消涡整流片对桨盘面速度分量周向不均匀性的抑制作用,并与辅翼的整流作用进行了比较,结果表明,消涡整流片效果相对较好,可使周向不均匀性下降50%~80%,且整流片的整流效果具有较好的稳定性。  相似文献   

15.
Data on hydrography, phyto- and zooplankton, obtained on a transect along the 0° meridian during the Winter Weddell Gyre Study, June 1992, revealed peculiarities of the early winter situation in the eastern Weddell Gyre. The vertical distribution and developmental stage composition of Rhincalanus gigas, Calanoides acutus, Calanus propinquus and krill, Euphausia superba larvae, were a good index for a general assessment of the seasonal condition of the plankton communities. There were five zones differing in seasonal situation: (1) The Polar Front and the southern ACC (not studied in detail), (2) The Weddell Front, (3) The Weddell Gyre interior, (4) The Maud Rise area, and (5) The Coastal Current zone. In the Weddell Front, the planktonic community resembled an autumnal situation with moderate phytoplankton biomass; the overwintering stock of copepods was not completely formed and the occurrence of calyptopes larvae of E. superba indicated that krill continued to reproduce until May. In the Weddell Gyre interior, a typical winter plankton community was found even before sea ice had formed. The specific hydrographic regime of the Maud Rise (governed by the mesoscale circulation over the seamount) support the late autumn conditions similar to the Weddell Front (but without early krill larvae). The plankton of the Coastal Current was a winter community. We conclude that in the eastern part of the Weddell Front (compared to the western part) seasonal development of both phytoplankton and herbivorous zooplankton is delayed in spring but prolonged in late autumn. Furthermore, it appears that the Weddell Sea ecosystem exhibits a much higher degree of spatial and temporal variability than thought before. This may have an impact on seasonal pattern of organic carbon transport from the pelagic realm to deeper water layers and to the sediment.  相似文献   

16.
海底管道是海洋油气集输系统中最重要的组成部分之一,从铺设到服役都将承受多种载荷的作用,并可能发生局部屈曲且沿管道传播开来,由此造成严重的后果。海底管道的局部屈曲在管道安全性方面具有重要意义,已成为海底管道设计与评估中重要的内容。详细阐述了国外关于海底管道受外压、弯矩和轴力作用下的局部屈曲研究成果,论述了在单个载荷和多个载荷联合作用下的局部屈曲破坏机理,并提出了未来研究的建议。  相似文献   

17.
This paper describes the hydrographic conditions observed during six surveys carried out during 2003 and 2004, in the framework of the “IDEA Project” (acronym for “Influence of oceanographic structure and dynamics on demersal populations in waters of the Balearic Islands”). The surveys were developed on the shelf and slope of Mallorca Island, in particular in two fishing grounds at the north and south of the Mallorca channel. Periodic movements of the fishing fleet between these two areas have been regularly reported, suggesting a seasonal variability of the resources which could be in turn associated with the hydrodynamic variability. With this motivation, water masses affecting these grounds have been identified and their seasonal variability has been studied. Different oceanographic and environmental conditions have been found between the two fishing grounds. These differences are related to the presence of mesoscale structures, associated with the Western Mediterranean Intermediate Water (WIW) at the north of the Ibiza channel and big gyres detached from the Algerian Current. The former has been shown to have influence on the regional oceanic circulation and the latter could affect the progress of fresh Atlantic Water (AW) towards the channels and make possible the presence of high salinity values at intermediate waters at the south of Mallorca Island. Historical data from other oceanographic cruises carried out in the region are finally used to discuss the interannual variability of these mesoscale structures.  相似文献   

18.
The vertical and horizontal distribution of mesozooplankton biomass and its composition, together with the reproduction and development of the three dominant herbivorous copepods Calanus finmarchicus, C. glacialis and C. hyperboreus, were studied in the Northeast Water between the end of May and end of July, 1993. Biomass varied between 0.15 and 10.6 g m−2 and was lower on the shallow banks. Highest biomass was found on the shelf slope and in the entrances to Belgica and Westwind Troughs. There was no seasonal trend during the study period. Among the zooplankton taxa, copepods were dominant, with 84% biomass of all other taxa, followed by chaetognaths with 14%. The large Calanus species made up 91% of copepod biomass. The most abundant species, C. glacialis, inhabited areas of low current speeds on Belgica and Ob Bank, C. hyperboreus dominated shelf slope and trough stations, while C. finmarchicus was most abundant in the Return Atlantic Current along the shelf slope and also eastern Belgica Trough. C. glacialis was the only Calanus species spawning during this period, but young copepodites of the other species were also abundant. Egg production of C. glacialis was at a maximum by our arrival and continued to at least mid August. According to the results from starvation experiments, its egg production was fuelled by food uptake, but was decoupled from phytoplankton chlorophyll until July, indicating ice-algae and microzooplankton as an alternative food source. Only when the polynya approached its maximum extent was a close relationship to phytoplankton established. Due to both spatial and temporal heterogeneity of the occurrence of young copepodite stages it was impossible to follow the growth of cohorts of developmental stages. Herbivorous carbon requirements estimated from egg production rates were mostly less than one third of the phytoplankton stock. From egg production and the distribution of young stages, the outer Westwing Trough seems to be the centre of biological activities. This may be related to the formation of young ice in winter in this area, which was found to carry a large mass of under-ice algae. High biomass but low production in Belgica Trough indicate this as an advective and expatriated community of C. finmarchicus and C. hyperboreus, where grazing is negligible, at least during early summer.  相似文献   

19.
基于弹塑性有限元和极限平衡理论,研究并评价杭-甬天然气输气管道沿线某高边坡的稳定性,并分析结构面的强度和工作环境对边坡稳定的影响。研究表明:该边坡目前处于蠕滑状态,如遇强降水时将发生急剧滑动;边坡排水和注浆补强皆能改善坡体内应力状态,提高边坡的安全储备,特别是两种方法同时采用可使边坡安全系数达1.61;然而,要消除边坡后缘坡面的拉张破坏必须增加其它工程措施。研究结果为合理选择边坡加固方案和后续的安全监测提供了很好的依据。  相似文献   

20.
We construct a first country-wide model of demand for road use and of road safety outcomes for Algeria making use of the DRAG-type framework and of flexible regression estimation methods that make a demonstrable difference to the quality of our results. We imply that the availability of high quality Algerian data could make it worthwhile not only to consider updates of the model with longer data series but also to study variants of the model, notably with disaggregation of freight activities across industrial sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号