首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: This study compared the removal of aqueous Cr(VI) by multi‐walled carbon nanotubes (CNTs) modified by sulfuric acid, titanium dioxide (TiO2) and composite of CNTs and TiO2. RESULTS: More than 360 h contact time was needed to completely adsorb 3 mg L?1 of Cr(VI) by CNTs, indicating that the rate of adsorption by CNTs alone was slow. The reaction time approaching equilibrium depended on the Cr(VI) concentration. XPS analysis of CNTs after adsorbing Cr(VI) showed that the Cr(VI) on the surface of CNTs was partially reduced to Cr(III). A 3 mg L?1 solution of Cr(VI) was fully photocatalyzed by commercial TiO2 (Degussa P25) in less than 0.5 h under UV irradiation. Unlike P25, reduction by another commercial TiO2 (Hombikat UV100) took 4 h and more than 2 h were necessary for reduction by the composite. Thus the efficiency of Cr(VI) photo‐reduction by the composite was lower than by TiO2, but higher than that by CNTs. XPS analysis of TiO2 and composite showed the existence of both Cr(VI) and Cr(III) on their surfaces. CONCLUSION: In contrast to TiO2, the reduction rate of aqueous Cr(VI) using CNTs as adsorbent was slow. P25 had a markedly higher photocatalytic efficiency than the composite or UV100 alone. Using P25 to reduce aqueous Cr(VI) has a higher potential for practical application. The diameters of TiO2 and CNTs and the ratio of TiO2/CNTs are key problems in the preparation of TiO2/CNTs composite. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
This article describes a single-step reproducible approach for the surface modification of micrometer-sized polystyrene (PS) core particles to prepare electromagnetic PS/polyaniline–Fe3O4 (PS/PANi–Fe3O4) composite particles. The electromagnetic PANi–Fe3O4 shell was formed by simultaneous seeded chemical oxidative polymerization of aniline and precipitation of Fe3O4 nanoparticles. The weight ratio of PS to aniline was optimized to produce core–shell structure. PS/PANi–Fe3O4 composite particles were used as adsorbent for the removal of Cr(VI) via anion-exchange mechanism. The composite particles possessed enough magnetic property for magnetic separation. The adsorption was highly pH dependent. Adsorption efficiency reached 100% at pH 2 in 120 min when 0.05 g of composite particles was mixed with 30 mL 5 mg L−1 Cr(VI) solution. The adsorption isotherm fitted best with Freundlich model and maximum adsorption capacity approached 20.289 mg g−1 at 323 K. The prepared composite was found to be an useful adsorbent for the removal of soluble Cr(VI) ions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47524.  相似文献   

3.
A catalyst consisting of Cu0.5Mg0.5Fe2O4 (CMF) supported on carbon nanotubes (CNTs) which exhibits great potential as an adsorbent for treating Cr(VI)-contaminated wastewater has been successfully prepared. The ferrite possesses excellent magnetic properties, while CNTs have the advantage of a large surface area. This composite material not only prevents the aggregation of magnetic materials and enhances the exposure of active sites but also effectively solves the recycling problem of CNTs. Our results show that the adsorption capacity of Cu0.5Mg0.5Fe2O4–carbon nanotubes (CMF-CNTs) for Cr(VI) wastewater (45.60 mg/g) is 1.49 times higher than that of Cu0.5Mg0.5Fe2O4 (30.48 mg/g). Compared to a single catalyst, CMF-CNTs not only improve the dispersibility of magnetic materials but also exhibit synergistic effects between the composite materials, enhancing the chemical adsorption capacity. After five consecutive adsorption and desorption experiments, the adsorption capacity of CMF-CNTs remains at 88% of its initial value. Furthermore, the study of the catalyst before and after adsorption by XPS reveals that the valence state transition of Fe3+/Fe2+ and Cu2+/Cu+ plays a crucial role in the adsorption process. The results of this study demonstrate the potential of using waste materials for effective wastewater treatment and provide insights into the development of new adsorbents for pollutant removal.  相似文献   

4.
The conventional chemical reduction of Cr(VI) to Cr(III) and subsequent Cr(OH)3 precipitation are expensive due to the use of large amounts of chemicals and the generation of chemical sludges. An attempt was carried out for microbial Cr(VI) removal in an anaerobic chemostat fed with an acetate-containing synthetic medium. With 26 mg Cr(VI) dm−3 in the influent, almost complete removal of Cr(VI) was achieved at dilution rates of 0·15 and 0·32 day−1 at 20°C and at 35°C, respectively. The optimum Cr(VI) mass loading and the specific Cr(VI) applied rates were found to be 5 mg Cr(VI) dm−3 day−1 and 0·02 mg Cr(VI) mg−1 VSS day−1, respectively. Either the influent Cr(VI) concentration or the dilution rate could be adjusted to maintain an efficient removal of Cr(VI) in a continuous operation. Since the Cr(VI)-reducing activity is associated with the biomass concentration in the system, recycling the effluent solids is essential for practical application. In a batch reactor with the biomass collected from the chemostat, NaAc degradation appeared to be proportional to Cr(VI) reduction with the ratio of 9 mg C mg−1 Cr(VI) at 35°C. As reactions proceeded, the oxidation–reduction potential correspondingly decreased and both pH and alkalinity increased. © 1997 SCI.  相似文献   

5.
BACKGROUND: Phenol and hexavalent chromium are considered industrial pollutants that pose severe threats to human health and the environment. The two pollutants can be found together in aquatic environments originating from mixed discharges of many industrial processes, or from a single industry discharge. The main objective of this work was to study the feasibility of using phenol as an electron donor for Cr(VI) reduction, thus achieving the simultaneous biological removal/reduction of the two pollutants in a packed‐bed reactor. RESULTS: A pilot‐scale packed‐bed reactor was used to estimate phenol removal with simultaneous Cr(VI) reduction through biological mechanisms, using a new mixed bacterial culture originated from Cr(VI)‐reducing and phenol‐degrading bacteria, operated in draw–fill mode with recirculation. Experiments were performed for feed Cr(VI) concentration of about 5.5 mg L?1, while phenol concentration ranged from 350 to 1500 mg L?1. The maximum reduction/removal rates achieved were 0.062 g Cr(VI) L?1 d?1 and 3.574 g phenol L?1 d?1, for a phenol concentration of 500 mg L?1. CONCLUSION: Phenol removal with simultaneous biological Cr(VI) reduction is feasible in a packed‐bed attached growth bioreactor. Phenol was found to inhibit Cr(VI) reduction, while phenol removal was rather unaffected by Cr(VI) concentration increase. However, the recorded removal rates of phenol and Cr(VI) were found to be much lower than those obtained from previous research, where the two pollutants were examined separately. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
Fabrication of multifunctional adsorbent of single-phase material is quite challenging and meaningful for water treatment. In this work, a polyaminosiloxane functionalized melamine sponge is used to remove both heavy metal ions and oil from water. Benefiting from its porous structure, superhydrophobic surface, and abundant amino groups on the surface, the sponge shows excellent performance in Cr(VI) removal and oil/water separation. Notably, the sponge exhibits fluorescent detection function for Cr(VI) owing to the packing of Schiff-base bonds, facilitating the adsorption process to be monitored in real time. The maximum adsorption capacity of Cr(VI) is 252.82 mg g−1 with good selectivity. In addition to the excellent Cr(VI) removal performance, its superhydrophobic nature allows it to adsorb 92.42 times the weight of oil and realize 99.97% oil/water separation efficiency. This trifunctional cost-effective adsorption material shows great potential for large-scale water purification application.  相似文献   

7.
The polymer foam coated with zero-valent copper (Cu0) was designed and prepared for the removal of hexavalent chromium (Cr(VI)) in water. Firstly, porous poly(tert-butyl acrylate) was fabricated by concentrated emulsion polymerization and then acrylic acid groups were generated on the surface of foam by hydrolysis reaction. Secondly, with the help of the large amount reactive carboxylic acid groups, polyethyleneimine (PEI) were chemically grafted onto the surface by the reaction between amine group and acrylic acid group. Finally, zero-valent copper was reduced by sodium borohydride (NaBH4) and coated on the surface of polymer foam. Thus the copper functionalized porous adsorbent (Cu0–PEI–PAA) was constructed, and then applied for removing Cr(VI) from aqueous solution. The removal mechanism of Cr(VI) involved redox reaction by zero-valent copper and adsorption by amine groups, simultaneously. As a result, 99.5% of Cr(VI) could be removed within 2 h, and the maximum removal capacity for Cr(VI) of Cu0–PEI(1800)–PAA was 9.16 mg/g. Furthermore, the effect of initial concentration of Cr(VI), pH value, and temperature on the Cr(VI) removal was investigated. Therefore, the as-prepared zero-valent copper-loaded polymer foam could be an efficient and promising remediation material to remove Cr(VI) from wastewater.  相似文献   

8.
A novel magnetic adsorbent, poly(catechol‐1,4‐butanediamine)‐coated Fe3O4 composite (Fe3O4@PCBA), was successfully fabricated via an easy and gentle method according to the mussel‐inspired adhesion property of polydopamine. Effects of many factors on the adsorption performance of Fe3O4@PCBA for Cr(VI) were investigated, including temperature, pH value, contacting time, adsorbent dosage, and initial Cr(VI) concentration. The thermodynamics, adsorption isotherm, kinetics, and intraparticle diffusion of adsorption were also studied systematically. Results indicated that the removal rate of Cr(VI) was approximately close to 100% when the initial concentration was less than 120 mg/L, and the maximum uptake capacity of Fe3O4@PCBA for Cr(VI) was 280.11 mg/g complied with Langmuir isotherm model. Accordingly, the nocuous Cr(VI) could be partially reduced to Cr(III) during the adsorption period. Hopefully, this strategy could be extended to prepare series of magnetic Fe3O4@catechol–amine adsorbents with different amino and phenolic hydroxyl groups for Cr(VI) removal. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46530.  相似文献   

9.
This work introduces a biochar as novel adsorbent prepared from the dew melon peel by pyrolysis method, and demonstrates its potential for eliminating Cr(VI) from simulated and actual wastewaters. The dew melon peel biochar (DPB) was characterized by several techniques and methodologies such as, BET, SEM, FTIR, Boehm titration, ultimate analysis, and pHzpc. DPB is a microporous material with the BET specific surface area of 196 m2/g. The effects of different parameters including pH, amount of adsorbent, Cr(VI) concentration, and mixing time on the removal of Cr(VI) from wastewater were studied. Maximum adsorption (98.6%) was observed at pH 6 and 100 mg/L metal concentration. The equilibrium adsorption was analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Kinetic data were evaluated by pseudo-first order, pseudo-second order, intraparticle diffusion, film diffusion (Boyd), Elovich, and Avrami models. The kinetic data were best fitted to the pseudo-second order model. The Langmuir isotherm model gives the better correlation to predict the adsorption equilibrium, with a maximum adsorption capacity of 198.7 mg/g. The thermodynamic parameters showed that the adsorption of Cr(VI) was endothermic and spontaneous. Competition between the co-existing ions of Cl?, NO 3 ? , SO 4 2? , PO 4 3? , and HCO 3 ? on the adsorption process was studied. The efficacy of DPB was successfully examined by analyzing the removal of Cr(VI) from two industrial wastewaters. The results indicate that DPB is promising as an effective and economical adsorbent for Cr(VI) ions removal and could be repeatedly used with no significant loss of adsorption efficiency.  相似文献   

10.
Chromium(VI) adsorption onto amine-functionalized sepiolites from aqueous solution at 298 K was investigated. Natural and acid-activated sepiolites were functionalized by covalent grafting [3-(2-aminoethylamino)propyl]trimethoxy-silane to the silanol groups onto the sepiolite surface. Functionalization was proved by differential thermal analysis and the point of zero charge, pHpzc, determinations. The adsorption isotherms suggested that the adsorption capacity of the functionalized acid-activated sepiolite was higher than that of the functionalized natural sepiolite, for all investigated initial solution pH values. Adsorption efficiency of the functionalized sepiolites was improved by decreasing solution pH value. Due to the high value of pHpzc and large buffer capacity of adsorbents, a very low initial solution pH value was required to achieve high protonation of the surface amine groups and provide electrostatic attraction of Cr(VI) anionic species. The maximum chromium(VI) removal was achieved at an initial pH of 2.0; ca. 60 mg/g of functionalized acid-activated sepiolite and ca. 37 mg/g of functionalized natural sepiolite. Equilibrium data for both functionalized sepiolites at an initial solution pH value of 2.0 fitted well to the Freundlich model. The adsorption process followed pseudo-second-order kinetics. The values of the thermodynamic parameters indicate a spontaneous adsorption process of a prevalently physical nature.  相似文献   

11.
The adsorption of Cr (VI) from aqueous solution onto nanoparticles hematite (α-Fe2O3) of different morphologies synthesized by acid hydrolysis, transformation of ferrihydrite, sol gel methods has been investigated. The hematite particle sizes were in the range 15.69-85.84 nm and exhibiting different morphologies such as hexagonal, plate-like, nano-cubes, sub-rounded and spherical. The maximum adsorption capacity of Cr (VI) was found to be in the range 6.33–200 mgg?1 for all hematite samples. The kinetics of sorption was rapid, reaching equilibrium at 45–240 minutes. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. The rate constants were in the range 0.996–2.37×10?2 g/mg/min for all samples. The maximum adsorption was attained at pH 3.0, while adsorption decreased as the pH increased from pH 3.0 to 10.0. The study revealed that the hematite with plate-like morphology has the highest adsorption capacity. The sorption process has been found to be feasible following a chemisorption process, and adsorption of Cr (VI) onto hematite nanoparticles was by inner sphere surface complexation due to low desorption efficiency in the range 9.54–53.4%. However, the result of ionic strength revealed that the reaction was by outer sphere complexation. This study showed that morphologies play a vital role in the adsorption capacities of samples of hematite in the removal of Cr (VI) from aqueous solution.  相似文献   

12.
《分离科学与技术》2012,47(1):111-122
Abstract

A possibility of Cr(VI) removal by the adsorption method is discussed in the paper. An adsorbent were hydrogel chitosan beads are produced by the phase inversion method (by changing pH). The possibility of removing Cr(VI) ions by both pure chitosan hydrogel and its chelate compounds (chitosan cross‐linked with Cu(II) and Ag(I) ions) was investigated. The adsorption proceeded from the solutions of potassium dichromate and ammonium dichromate (NH4)2Cr2O7 and K2Cr2O7. The process rates and adsorption isotherms were determined and described by relevant equations. The process rate was described by the pseudo‐ and second‐order equations, and adsorption equilibria by the Langmuir equations. A slight advantageous change in adsorption properties of chitosan beads was revealed after cross‐linking (for chromium concentration up to 10 g/dm3). A maximum adsorption was 1.1 gCr/g chitosan. Results of the studies show that chitosan hydrogel proves useful in the removal of Cr(VI) ions, additionally, cross‐linking with Cu(II) and Ag(I) ions has an advantageous effect in the case of low‐concentrated solutions.  相似文献   

13.
The removal of chromium(VI) from saturated sodium chloride (NaCl) solution by strong alkaline anion‐exchange fiber (SAAEF) was achieved with column experiments. Factors affecting the adsorption, such as the pH value, loading density, flow rate, and operational temperature, were investigated. The results show that Cr(VI) removal was remarkably pH dependent. The optimal operational conditions were as follows: pH value = 2.0, loading density = 0.12–0.19 g/cm3, room temperature, and flow rate = 6–12 BV/h. The SAAEF column could be regenerated completely by 2% NaOH in saturated NaCl or 2% KOH in 15% KCl as an eluent. Cr(VI) was recycled as Na2Cr2O7 and K2Cr2O7, respectively. The desorption rate of Cr(VI) reached 98.09%. The adsorption ability of the SAAEFs was stable after repeated use. Overall, the results indicate that SAAEF proved to be an effective material for the adsorption of high concentrations of Cr(VI) from a saturated NaCl solution. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
In this work, a composite from α‐cellulose coated with conducting polypyrrole by in situ polymerization using potassium persulfate as oxidant was obtained. The composite was characterized by fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry, UV/Vis spectroscopy, and scanning electron microscopy (SEM) analysis showed homogeneous coating of α‐cellulose with polypyrrole (PPy) to produce a composite with a conductivity of 3.5 × 10−5 S/m. Batch aqueous adsorption experiments of the reactive red 120 (RR120) dye onto the synthesized material were conducted. The results showed that this composite is an efficient adsorbent for RR120 dye removal. For the adsorption experiments set to an initial pH of 3.9, the adsorption capacity was 15.6 mg of dye/g of composite for an equilibrium concentration (in the liquid) of RR120 dye equal to 1,000 mg/L, whereas a value of 96.1 mg of dye/g of composite was obtained when the solution pH was set to 2.0 for the same equilibrium concentration. When performing adsorption experiments using pure α‐cellulose, dye adsorption was insignificant at any pH value. Adsorption isotherm for RR120 was described by a typical Freundlich model. The transient adsorption of RR120 on the synthesized composite was described by a general three‐resistance model that includes the transport on the film that surrounds the composite particles, diffusion inside the particles, and adsorption on the surface of the particles. A fitting of the uptake curves was performed allowing the estimation of values for the effective diffusivity, D0, and the adsorption rate coefficient, k1. For the adsorption experiments with an initial pH value set to 3.9, D0 was estimated as 1.05 × 10−10 m2/s, whereas k1 was 1.65 × 10−4 Ln/g mgn − 1 s; the corresponding values of k1 at pH = 2 and 9.0 were 3.18 × 10−4 and 5.16 × 10−5, respectively. POLYM. COMPOS., 36:312–321, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
To efficiently remove cesium ions from aqueous solution, sericite was used as a novel adsorbent. The silanol (SiO2) and aluminol (Al2O3) groups in sericite are likely to play an important role in adsorption process. The maximum adsorption capacity (qm) and adsorption constant (KL) for cesium ions obtained from the Langmuir isotherm model were 6.68 mg/g and 0.227 L/mg, respectively and regression curve fit well with the experimental data as the 0.965 of correlation coefficients (r2). However, when the Freundlich isotherm model was used correlation coefficient (r2) was 0.973. Therefore, it was concluded that Freundlich model fits equilibrium data better than Langmuir model. When the 6.0 g/L of sericie concentration was added to aqueous solution, cesium ions were removed by about 80% and the increase was not happened above 6.0 g/L of sericite concentration any more. The process was determined as exothermic reaction because the removal efficiency of cesium ions decreased as temperature increased. Furthermore, all adsorption was completed in 120 min and comparing the pseudo first and second-order kinetic models indicates that the adsorption of cesium ions using sericite follows well the pseudo-second-order kinetics.  相似文献   

16.
Cr (VI) is a highly toxic pollutant to humans, to achieve high adsorption capacity, easy recovery, and good reusability, polyethersulfone/polydopamine (PES/PDA) ultrafine fibers were prepared successfully. A series of preparing effect factors were investigated systematically and the optimum one is 8.5 pH value at room temperature and 2 g/L dopamine concentration. And then they were used as an adsorbent for the removal of Cr (VI) ions from wastewater. The effect factors pH, the adsorbent dosage, and time were discussed on Cr (VI) adsorption process and the Cr (VI) adsorption behavior was investigated. It is found that the maximum Cr (VI) adsorption capacity is 115.2 ± 4.8 mg/g at pH = 3 using 0.06 g PES/PDA with 80 mins. The Cr (VI) adsorption process followed the pseudo-second-order model (r2 ≥ 0.99) and adsorption isotherms were fitted to the Langmuir model (R2 ≥ 0.999). Furthermore, the Cr (VI) adsorption mechanism was supposed according to the X-ray photoelectron spectroscopic results. Finally, PES/PDA ultrafine fibers were considered to be a promising adsorbent with good stability (decomposing temperature, 356°C), high adsorption efficiency (112.1 ± 2.5 mg/g), and good reusability (three times) on the coexistence of anions and the actual industry wastewater environment.  相似文献   

17.
《分离科学与技术》2012,47(11-12):3200-3220
Abstract

Grainless stalk of corn (GLSC) was tested for removal of Cr(VI) and Cr(III) from aqueous solution at different pH, contact time, temperature, and chromium/adsorbent ratio. The results show that the optimum pH for removal of Cr(VI) is 0.84, while the optimum pH for removal of Cr(III) is 4.6. The adsorption processes of both Cr(VI) and Cr(III) onto GLSC were found to follow first-order kinetics. Values of k ads of 0.037 and 0.018 min?1 were obtained for Cr(VI) and Cr(III), respectively. The adsorption capacity of GLSC was calculated from the Langmuir isotherm as 7.1 mg g?1 at pH 0.84 for Cr(VI), and as 7.3 mg g?1 at pH 4.6 for Cr(III), at 20°C. At the optimum pH for Cr(VI) removal, Cr(VI) reduces to Cr(III). EPR spectroscopy shows the presence of Cr(V) + Cr(III)-bound-GLSC at short contact times and adsorbed Cr(III) as the final oxidation state of Cr(VI)-treated GLSC. The results indicate that, at pH ≈ 1, GLSC can completely remove Cr(VI) from aqueous solution through an adsorption-coupled reduction mechanism to yield adsorbed Cr(III) and the less toxic aqueous Cr(III), which can be further removed at pH 4.6.  相似文献   

18.
BACKGROUND: This work fulfils the need to develop an eco‐friendly biosorbent, elucidating the mechanism of biosorption. Removal of Cr(VI) by Rhizopus arrhizus was investigated in batch mode. Enhancement in the performance of the biosorbent was attempted by pre‐treating the biomass with inorganic and organic acids, chelating agent, cross‐linker and an organic solvent followed by autoclaving. The surface characterization of the biomass was carried out by potentiometric titration, surface area analysis, infrared spectroscopy, chemical modification of the biomass and scanning electron microscopy. RESULTS: All the physico‐chemical treatments of the biosorbent improved Cr(VI) uptake compared with the native biomass (21.72 mg g?1). The highest biosorption capacity (31.52 mg g?1) was achieved after pre‐treating the biomass with 0.5 mol L?1 HNO3 followed by autoclaving. Surface characterization of the biomass using pHzpc, potentiometry and Fourier transform infrared (FTIR) analysis revealed the role of amino and carboxyl groups in Cr(VI) removal by electrostatic attraction. Chemical modification of amino and carboxyl groups significantly decreased Cr(VI) uptake capacity confirming their role in biosorption. SEM analysis showed adsorption of Cr(VI) on the biosorbent surface. CONCLUSION: Rhizopus arrhizus biomass proved to be an effective and low cost alternative biosorbent for removal of Cr(VI) from aqueous solutions. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

20.
《Ceramics International》2021,47(18):25951-25958
Herein, 3D flower-like δ-MnO2, MXene and δ-MnO2/MXene in-situ hybrid (IH) composites were prepared (via hydrothermal and solution treatment methods) for the effective removal of Cr (VI) from the contaminated water. The effect of various experimental parameters including contact time, pH levels and initial Cr (VI) ions concentration was determined and compared under static conditions. The kinetics of Cr (VI) adsorption onto δ-MnO2, MXene, and IH confirmed the existence of a pseudo-second-order model. The obtained results reveal that the removal of Cr (VI) largely depends on the pH of the solution. The adsorption isotherm data fits best for Freundlich model, illustrating a multi-site adsorption mechanism of Cr (VI) ion on these adsorbents. The maximum Cr (VI) adsorption capacities onto δ-MnO2, MXene and IH are 235.65 mg g−1, 273.1 mg g−1 and 353.87 mg g−1, respectively. The study reveals that hetero-engineered approach of synthesizing transition metal oxides with MXenes provides abundant opportunities to remove contaminants from water with better efficiency due to reduction and electrostatic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号