首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Oxidation tests of carbon fiber reinforced silicon carbide composites with a Si–W coating were conducted in dry air from room temperature to 1500°C for 5 h. A continuous series of empirical functions relating weight change to temperature after 5 h oxidation was found to fit the test results quite well over the whole temperature range. This approach was used to interpret the different oxidation mechanisms. There were two cracking temperatures of the matrix and the coating for the C–SiC composite. Oxidation behavior of the C–SiC composite was nearly the same as that of the coated C–C composite above the coating cracking temperature, but weight loss of the C–SiC composite was half an order lower than that of the coated C–C composite below the cracking temperature. As an inhibitor, the SiC matrix increased the oxidation resistance of C–SiC composites by decreasing active sites available for oxidation. As an interfacial layer, pyrolytic carbon decreased the activation energy below 700°C. From 800°C to 1030°C, uniform oxidation took place for the C–SiC composite, but non-uniform oxidation took place for the coated C–C composite in the same temperature range. The Knudsen diffusion coefficient could be used to explain the relationship between weight loss and temperature below the coating cracking temperature and the matrix cracking temperature.  相似文献   

2.
《Ceramics International》2016,42(8):9527-9537
Chopped carbon fiber preform reinforced carbon and SiC dual matrix composites (C/C–SiC) were fabricated by chemical vapor infiltration (CVI) combined with liquid silicon infiltration. The preform was fabricated by repeatedly overlapping chopped carbon fiber web and needle punching technique. A geometry model of the pore structure of the preform was built and reactant gas transportation during the CVI was calculated. The microstructure and properties of the C/C–SiC composites were investigated. The results indicated that the CVI time for densification of the preform decrease sharply, and the model showed the permeability of the preform decreased with the increase of its density. The C/C–SiC exhibited good mechanical characteristics, especially excellent compressive behavior, with the vertical and parallel compressive strength reached to 359(±40) MPa and 257(±35) MPa, respectively. The coefficient of friction (COF) decreased from 0.60 (at 8 m/s) with the increase of sliding velocity, and finally stabilized at ~0.35 under the velocity of 20 m/s and 24 m/s, and the variations of COF were not sensitive to the sliding distance. The wear rates were between 0.012 cm3/MJ and 0.024 cm3/MJ under different velocities. These results showed that the chopped carbon fiber preform reinforced C/C–SiC are promising candidates for high-performance and low-cost friction composites.  相似文献   

3.
A SiC particulate-reinforced Si–C–N ceramic composite was fabricated using the precursor impregnation and pyrolysis method, and its thermal and mechanical properties were analyzed. The weight loss of the composite was 5% after a heating at 2100 °C in Ar. The pores of the composite enlarged at and above 1700 °C in Ar due to the decomposition of the Si–C–N matrix. However, the composite retained mechanical properties such as strength and hardness after heating at 1700 °C. 88% of the original strength was remained after heating at 2000 °C for 10 h although the fabrication temperature was 1350 °C. The weight gain of the composite was 3.2% after an oxidation at 1450 °C for 30 min in air. The inner oxidation of the particulate-reinforced composites (PRC) was suppressed above 1400 °C due to the closure of the open pores by SiO2. Consequently, the composite possessed excellent creep resistance at 1400 °C in air. The SiC/Si–C–N composite is a challenging candidate for the application at high temperature.  相似文献   

4.
A low-cost carbon/silicon carbide (C/SiC) composite was manufactured by phenolic resin impregnation–pyrolysis combined with liquid silicon infiltration. The carbon fiber preform was prepared by three-dimensional needling. A carbon/carbon composite with a density of 1.22 g/cm3 after only one impregnation–pyrolysis cycle was achieved by using hot-pressing curing. The density of the final C/SiC was 2.10 g/cm3 with a porosity of 4.50% and SiC-content of 45.73%. The C/SiC composite had a high thermal conductivity of 48.72 W/(m K) perpendicular to the friction surface and demonstrated good friction and wear properties. The static and average dynamic friction coefficients were 0.68 and 0.32 (at a braking velocity of 28 m/s). The weight wear rates of the rotating disk and stationary disk were respectively 7.71 and 5.60 mg/cycle with linear wear rates, 1.67 and 1.22 μm/cycle, at a braking velocity of 28 m/s.  相似文献   

5.
Porous multidirectional carbon/carbon composite obtained by pulse chemical vapour infiltration (PCVI) was impregnated with silicon carbide (SiC) derived from pyrolysis of polymethylsiloxane resin (PMS). The impregnation process was made to improve oxidation resistance and mechanical properties of MD C/C composite. The resin was used as a source of silicon carbide component of the composite forming after heat treatment above 1000 °C. During this process SiC thin filaments were formed inside the porous carbon phase. The aim of this work was to investigate the structure and microstructure of the constituents of carbon composite obtained after pyrolysis of SiC PMS precursor. Microscopic observations revealed that during careful heat treatment of crosslinked polymethylsiloxane resin up to 1700 °C, the filaments (diameter 200–400 nm) crystallized within porous carbon phase. The filaments were randomly oriented on the composite surface and inside the pores. FTIR spectra and XRD analysis of the modified C/C composite showed that filaments had silicon carbide structure with the crystallite size of silicon carbide phase of about 45 nm. The Raman spectra revealed that the composite contains two carbon components distinctly differing in their structural order, and SiC filaments present nanocrystalline structure.  相似文献   

6.
Graphite–silicon carbide (G–SiC), carbon/carbon–silicon carbide (C/C–SiC) and mesocarbon microbeads–silicon carbide (MCMB–SiC) composites were produced using liquid silicon infiltration (LSI) method and their physical and mechanical properties, including density, porosity, flexural strength and ablation resistance were investigated. In comparison with G–SiC and C/C–SiC composites, MCMB–SiC composites have the highest bending strength (210 MPa) and ablation resistance (9.1%). Moreover, scanning electron microscopy (SEM) and optical microscopy (OM) are used to analyze the reacted microstructure, pore morphology and pore distribution of carbon-based matrices. As a result, SiC network reinforcement was formed in situ via a reaction between liquid silicon and carbon. The unreacted carbon and solidified silicon are two phases present in the final microstructure and are characterized by X-ray diffraction (XRD). Based on the results obtained and the low-cost processing of pitch-based materials, the MCMB–SiC composite is a promising candidate for aerospace applications.  相似文献   

7.
The oxidation behavior of biomorphic SiC based ceramics with different microstructure and composition was studied at 1450 °C in airflow for 50 h by thermal gravimetric analysis (TGA). SiC with amorphous, coarse grain, crystalline and fine grain crystalline microstructures as well as SiC–Si3N4 composite ceramics were processed from paper preforms by chemical vapor infiltration and reaction technique. The ceramics were characterized by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDX) before and after oxidation. The results show that the crystalline SiC with fine grain structure and SiC–Si3N4 composite ceramics show very good oxidation resistance at a temperature of 1450 °C.  相似文献   

8.
Reactive melt infiltration (RMI) has been proved to be one of the most promising technologies for fabrication of C/SiC composites because of its low cost and short processing cycle. However, the poor mechanical and anti-ablation properties of the RMI-C/SiC composites severely limit their practical use due to an imperfect siliconization of carbon matrixes with thick walls and micron-sized pores. Here, we report a high-performance RMI-C/SiC composite fabricated using a carbon fiber reinforced nanoporous carbon (NC) matrix preform composed of overlapping nanoparticles and abundant nanopores. For comparison, the C/C performs with conventional pyrocarbon (PyC) or resin carbon (ReC) matrixes were also used to explore the effect of carbon matrix on the composition and property of the obtained C/SiC composites. The C/SiC derived from C/NC with a high density of 2.50 g cm?3 has dense and pure SiC matrix and intact carbon fibers due to the complete ceramization of original carbon matrix and the almost full consumption of inspersed silicon. In contrast, the counterparts based on C/PyC or C/ReC with a low density have a little SiC, much residual silicon and carbon, and many corroded fibers. As a result, the C/SiC from C/NC shows the highest flexural strength of 218.1 MPa and the lowest ablation rate of 0.168 µm s?1 in an oxyacetylene flame of ~ 2200 °C with a duration time of 500 s. This work opens up a new way for the development of high-performance ceramic matrix composites by siliconizing the C/C preforms with nanoporous carbon matrix.  相似文献   

9.
We report the physical and mechanical properties of ceramic composite materials fabricated by binder jet 3D printing (BJ3DP) with silicon carbide (SiC) powders, followed by phenolic resin infiltration and pyrolysis (IP) to generate carbon, and a final reactive silicon melt infiltration step. After two phenolic resin infiltration and pyrolysis cycles; porosity was less than 2%, Young's modulus was close to 300 GPa, and the flexural strength was 517.6 ± 24.8 MPa. However, diminishing returns were obtained after more than two phenolic resin infiltration and pyrolysis cycles as surface pores in carbon were closed upon the formation of SiC, resulting in reaction choking and residual-free carbon and porosity. The instantaneous coefficient of thermal expansion of the composite was found to be independent of the number of phenolic IP cycles and had values of between 4.2 and 5.0 ppm/°C between 300 and 1000℃, whereas the thermal conductivity was found to have a weak dependence on the number of phenolic IP cycles. While the manufacturing procedures described here yielded highly dense, gas impermeable, siliconized SiC composites with properties comparable to those of bulk siliconized silicon carbide processed according to conventional techniques, BJ3DP enables the manufacture of objects with complex shape, unlike conventional techniques.  相似文献   

10.
A high performance and low cost C/C–SiC composite was prepared by Si–10Zr alloyed melt infiltration. Carbon fiber felt was firstly densified by pyrolytic carbon using chemical vapor infiltration to obtain a porous C/C preform. The eutectic Si–Zr alloyed melt (Zr: 10 at.%, Si: 90 at.%) was then infiltrated into the porous preform at 1450 °C to prepare the C/C–SiC composite. Due to the in situ reaction between the pyrolytic carbon and the Si–Zr alloy, SiC, ZrSi2 and ZrC phases were formed, the formation and distribution of which were investigated by thermodynamics. The as-received C/C–SiC composite, with the flexural strength of 353.6 MPa, displayed a pseudo-ductile fracture behavior. Compared with the C/C preform and C/C composite of high density, the C/C–SiC composite presented improved oxidation resistance, which lost 36.5% of its weight whereas the C/C preform lost all its weight and the high density C/C composite lost 84% of its weight after 20 min oxidation in air at 1400 °C. ZrO2, ZrSiO4 and SiO2 were formed on the surface of the C/C–SiC composite, which effectively protected the composite from oxidation.  相似文献   

11.
Sintered silicon carbide was brazed to itself by Ag–35.25 wt%Cu–1.75 wt%Ti filler alloy at 860 °C, 900 °C and 940 °C for 10 min, 30 min and 60 min. Mechanical properties both at room temperature and high temperature were measured by flexural strength. The interfacial microstructure was investigated by electron probe microanalysis (EPMA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experimental results indicate that increased brazing temperature heightens the flexural strength and the maximal four-point flexural strength reaches 342 MPa at room temperature. In addition longer holding times result in thicker reaction layer, which increases mismatch of coefficients of thermal expansion (CTE) between SiC substrate and reaction layer and finally leads to poor mechanical properties due to high residual stresses. High temperature flexural strength decreases with an increase of test temperature due to softening of the filler alloy. A reaction layer composed of TiC and Ti5Si3 was observed at the interface of SiC/filler alloy and there is a representative microstructure: SiC/continuous fine TiC layer/discontinuous coarse Ti5Si3 layer/filler alloy.  相似文献   

12.
Ceramic matrix composites are typically prepared by a costly, time-consuming process under severe conditions. Herein, a cost-effective C/SiC composite was fabricated from a silicon gel-derived source by Joule heating. The β-SiC phase was generated via carbothermal reduction, and the carbon fabric showed a well-developed graphitic structure, promoting its thermal and anti-oxidation stabilities. Owing to the excellent dielectric loss in carbon fabric, SiC and SiO2 as well as the micropore structure of the ceramic matrix, the absolute electromagnetic interference shielding (EMI) effectiveness (SSE/t) reached 948.18 dB?cm2?g-1 in the X-band, exhibiting an excellent EMI SE. After oxidation at 1000 °C for 10 h in the air, the SSE/t of the composite was only reduced to 846.02 dB?cm2?g-1. The C/SiC composite promises the efficient fabrication of high-temperature resistant materials for electromagnetic shielding applications.  相似文献   

13.
Si/SiC composite ceramics was produced by reaction sintering method in process of molten silicon infiltration into porous C/SiC preform fabricated by powder injection molding followed by impregnation with phenolic resin and carbonization. To optimize the ceramics densification process, effect of slurry composition, debinding conditions and the key parameters of all technological stages on the Si/SiC composite characteristics was studied. At the stage of molding the value of solid loading 87.5% was achieved using bimodal SiC powder and paraffin-based binder. It was found that the optimal conditions of fast thermal debinding correspond to the heating rate of 10?°C/min in air. The porous C/SiC ceramic preform carbonized at 1200?°C contained 4% of pyrolytic carbon and ~25% of open pores. The bulk density of Si/SiC ceramics reached 3.04?g/cm3, silicon carbide content was 83–85?wt.% and residual porosity did not exceed 2%.  相似文献   

14.
A MoSi2/Si composite obtained in situ by reaction of silicon and molybdenum at 1450°C in Ar flow is proposed as pressure‐less joining material for C/SiC and SiC/SiC composites. A new “Mo‐wrap” technique was developed to form the joining material and to control silicon infiltration in porous composites. MoSi2/Si composite joining material infiltration inside coated and uncoated C/SiC and SiC/SiC composites, as well as its microstructure and interfacial reactions were studied. Preliminary mechanical strength of joints was tested at room temperature and after aging at service temperatures, resulting in interlaminar failure of the composites in most cases.  相似文献   

15.
TiC–SiC composites were fabricated using TiC and SiC powders as starting materials at the range of 1650–2000 °C in Ar atmosphere by two-step method. In the first step, the ingots with intragranular SiC or TiC particle were prepared by arc-melting technique, subsequently, crushed and ground into TiC and SiC composite powders. In the second step, TiC–SiC composites were sintered using these as-prepared composite powders by SPS method. It was concluded that these TiC–SiC composites prepared by two-step method showed more excellent properties than that prepared by arc-melting technique. The hardness of the fabricated TiC–SiC composites was 25–27 GPa at the load of 0.98–9.8 N, which was obviously greater than that of arc-melting composites. The thermal conductivity of the TiC–SiC composites was 18–48 W K−1 m−1 at the range of 298–1273 K and slightly decreased with increasing temperature. The electrical conductivity of the composites was (2–5) × 105 S m−1 at the range of 298–1273 K and slightly decreased with increasing temperature.  相似文献   

16.
《Ceramics International》2017,43(3):3439-3442
C/ZrC-SiC composites with a density of 3.09 g/cm3 and a porosity of 4.8% were prepared by reactive melt infiltration and vapour silicon infiltration. The flexural strength and modulus were 235 MPa and 18.3 GPa, respectively, and the fracture toughness was 7.0 MPa m1/2. The formation of SiC and ZrSi2 during vapour silicon infiltration, at the residual cracks and pores in the C/ZrC, enhanced the interface strength and its mechanical properties. The high flexural strength (223 MPa, c. 95% of the original value) after oxidation at 1600 °C for 10 min indicated the excellent oxidation resistance of the composites after vapour silicon infiltration. The mass loss and linear recession rate of the composites were 0.0071 g/s and 0.0047 mm/s, respectively and a fine ablation morphology was obtained.  相似文献   

17.
Low thermal expansion porous SiC–WC composite ceramics were prepared by solid state reaction of Si and WC at 1560 °C, with NH4HCO3 as a pore generating agent. Phase composition, thermal expansion, flexural strength, and microstructure of the carbide ceramics were examined. Presence of the SiC, WC and WC1−X phases were detected in the carbide ceramics. As Si content increased from 2 to 14 wt%, the coefficient of thermal expansion first decreased and then increased, with a minimum of 4.11 × 10−6 °C at 8 wt% Si, whereas the flexural strength decreased gradually, from 143.9 to 82.7 MPa. Pores of SiC–WC ceramics were less than 2 μm in diameter, because of the stacking interstice of carbide particles and volatilization of silicon. However in the presence of NH4HCO3, pores of SiC–WC ceramics were bimodally distributed, the stacking interstice of carbide particles loosened from 1 to 4 μm and pores larger than 5 μm were also formed.  相似文献   

18.
Two-dimensional C/ZrC–SiC composites were fabricated by chemical vapor infiltration (CVI) process combined with a modified polymer infiltration and pyrolysis (PIP) method. Two kinds of ZrC slurries (ZrC aqueous slurry and ZrC/polycarbosilane slurry) were employed to densify composites before the PIP process. The as-produced C/ZrC–SiC composites exhibited better mechanical properties than the C/SiC composites densified only by CVI and PIP process. Structural evolution for C/ZrC–SiC composites treated in the range 1200–1800 °C mainly consisted of the change of SiC whiskers and the decomposition of polymer derived ceramic.  相似文献   

19.
In order to improve the oxidation and thermal shock resistance of 2D C/SiC composites, dense SiB4–SiC matrix was in situ formed in 2D C/SiC composites by a joint process of slurry infiltration and liquid silicon infiltration. The synthesis mechanism of SiB4 was investigated by analyzing the reaction products of B4C–Si system. Compared with the porous C/SiC composites, the density of C/SiC–SiB4 composites increased from 1.63 to 2.23 g/cm3 and the flexural strength increased from 135 to 330 MPa. The thermal shock behaviors of C/SiC and C/SiC–SiB4 composites protected with SiC coating were studied using the method of air quenching. C/SiC–SiB4 composites displayed good resistance to thermal shock, and retained 95% of the original strength after being quenched in air from 1300 °C to room temperature for 60 cycles, which showed less weight loss than C/SiC composite.  相似文献   

20.
In this work, the needled carbon fiber preforms were used to make seven groups of carbon/carbon composite billets with different matrix carbon contents by controlling the processing time of chemical vapor infiltration (CVI). Cf/C–SiC composites were prepared by infiltration of SiC into these C/C composites billets using polycarbosilane (PCS) through precursor infiltration and pyrolysis (PIP). After oxy-acetylene torch testing (heat flux of 4.2 MW/m2) for 200s, 300s and 400s, respectively, it revealed that the anti-ablation properties of the Cf/C–SiC composite samples were enhanced by a higher content of SiC matrix. Additionally, specimens bearing longer duration tests showed a trend of lower average ablation rates. The lowest linear ablation rate is 0.008 mm/s and the mass ablation rate is 0.0019 g/s for those high SiC content samples tested for 400s. The SEM images of the tested samples showed the mechanism and the non-linear process of ablation resistance progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号