首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
不透水面是衡量城市化程度的重要指标之一,对京津唐城市群的不透水面进行深入研究,可以量化城市群扩张过程及其影响,对该区域多城市协调发展及规划布局具有重要意义。本文结合高分辨遥感影像、生长季及落叶季的Landsat TM遥感影像和夜间灯光数据等,采用分类和回归树(Classification and rRegression Tree, CART)算法,构建了适于京津唐地区不透水面盖度提取的技术方案,获取了京津唐地区1995-2016年共5期地表不透水面盖度专题信息,并分析了地表不透水面的时空演变规律,结论为:① 适于京津唐地区不透水面盖度提取的CART算法的最佳输入变量组合为:生长季和落叶季的Landsat TM图像以及对应的夜间灯光数据;其次为生长季Landsat TM遥感图像和夜间灯光数据组合方案。利用该组合方案,ISP估算输出结果的交叉验证精度R值可以达到约0.85,可以满足地表不透水面纵向对比分析的需要。② 从地表不透水面总面积数量值来看,1995-2016年京津唐主体城市区域整体上呈增长趋势,其中2011-2016年地表不透水面积增加愈加明显;③ 从地表不透水面盖度值的高低来看,1995-2016年京津唐中、高盖度不透水面的占比都是在不断增长的,低盖度不透水面占比存在少量下降现象,且京、津、唐3城市的主体城区各阶段变化差异较大,反映出了各城市扩张具有各自不同的时空演变特征。  相似文献   

2.
不透水面是衡量城市生态环境状况的重要指标。城市土地利用的复杂性和不透水表面材料的多样性,导致直接从高分辨率遥感影像中提取不透水表面具有挑战性。针对城市尺度高分辨率遥感影像的不透水面提取要求,本文提出基于深度学习的城市不透水面提取模型。首先,利用深度卷积神经网络对影像特征进行提取;然后,根据其邻域关系构建概率图学习模型,进一步引入高阶语义信息对特征进行优化,实现不透水面的精确提取。本文选取武汉市为实验区,以高分二号卫星遥感影像作为数据源,完成了不透水面专题信息提取,其中自动提取准确率在建成区为89.02%、在城乡结合部为95.55%。与随机森林(RF)和支持向量机(SVM)等经典方法对比,结果表明深度学习不透水面提取方法有较高的提取精度和细节准确性,建成区的总体精度相比于RF和SVM算法分别提升2.18%和1.68%。最后,对武汉市各主要行政区不透水面信息进行统计和分析,结果表明其中江汉区和武昌区2个核心主城区不透水面占比超过60%,并对武汉市现状和发展规划特点进行了讨论。本文研究成果可为海绵城市和生态城市的建设提供基础技术支撑和数据参考。  相似文献   

3.
基于遥感的城市热环境研究通常通过分析植被、不透水面和地表温度(Land Surface Temperature, LST )的关系来进行。虽然植被的降温作用和不透水面的增温作用已受到普遍认可,但缺少针对降温和增温效率的定量研究,本研究采用地表降温率(Land Surface Cooling Rate, LSCR)和地表增温率(Land Surface Warming Rate, LSWR)量化植被降温效率和不透水面增温效率并对2017年江苏省南京市城市热环境进行分析。以Landsat 8 OLI 4期遥感影像为数据源,利用线性光谱混合分析法(Linear Spectral Mixture Analysis,LSMA)获取亚像元植被覆盖度(Fractional Vegetation Coverage, FVC)、不透水面覆盖度(Impervious Surface Percentage, ISP)并利用高分Google影像进行精度验证。结合地表温度(Land Surface Temperature, LST)反演结果计算各季总体LSCR和LSWR,分析不同LST对总体LSCR和LSWR的影响。最后,将FVC和ISP分别按照阈值平均划分为4个区间,计算各区间的LSCR和LSWR,并在此基础上分析不同区间LSCR和LSWR的变化情况。研究结果表明: ① LST与整体LSCR、LSWR正相关,夏季植被降温效应和不透水面增温效应最强,LSCR和LSWR分别为5.6%和5.1%;② 夏季各区间LSCR与FVC正相关,FVC为75%~100%时LSCR达到最大值7.5%;各区间LSWR与ISP负相关,ISP为75%~100%时LSWR达到最小值2.4%;③ 当FVC为0~25%,ISP为75%~100%时,可以充分发挥植被的降温效应,抑制不透水面的增温效应,是最佳的植被和不透水面组合方案。本研究采用的LSCR和LSWR分析方法可以从抑制地表温度上升的角度选择最佳的FVC和ISP区间,未来可基于此横向对比不同城市,并结合纬度、地形、气候、树种等因素对LSCR和LSWR的影响,进一步探索LSCR和LSWR的影响因子和变化规律。  相似文献   

4.
不透水面作为反映城市发展程度和表征城市生态环境的重要指标,在城市化研究中成为重要的数据源。当前,不透水面信息的获取通常基于遥感数据来开展,包括不同分辨率的遥感数据。这些遥感数据在高精度提取城市不透水面的能力具有较大的差异,会因尺度不同而带来提取精度的偏差。因此,理解不同遥感数据源在不透水面提取上的差异尤为重要。本文利用Landsat/OLI光谱数据和VIIRS/DNB夜间灯光数据分别采用线性光谱混合分析法和大尺度不透水面指数法提取珠江三角洲研究区的不透水面信息,并从不透水面总体精度、不同密度精度对比分析2类数据源提取不透水面的差异。结果表明:① Landsat/OLI和VIIRS/DNB两者提取不透水面的总体精度差异不大,Landsat/OLI提取不透水面的精度总体上略高于VIIRS/DNB。2种数据提取不透水面的均方根误差RMSE分别是0.18和0.21,系统误差SE分别是0.12和0.13,决定系数R 2分别是0.76和0.67。② Landsat/OLI和VIIRS/DNB数据对不同密度不透水面分布区域的提取能力不同:VIIRS/DNB在低密度不透水面区域提取精度高于Landsat/OLI;而Landsat/OLI在中、高密度不透水面区域提取精度均高于VIIRS/DNB。通过2种数据提取精度差异的对比,以期为不同密度的不透水面分布区域提取找到最佳尺度的数据源,提高不透水面提取的效率和精度。  相似文献   

5.
芒萁是南方红壤侵蚀区生态恢复重要的地带性草本植物,对生态系统修复具有重要作用,监测其叶绿素含量能有效诊断生长健康状况。本文以福建省长汀县朱溪流域6个不同生态恢复年限下的芒萁叶片高光谱反射数据以及实测叶绿素含量为数据源,借助高光谱遥感技术分析不同恢复年限芒萁叶片原始光谱特征,筛选出光谱敏感波段并构建光谱指数,基于相关性分析,建立芒萁叶绿素单变量以及多元逐步回归模型,并确定最佳估算模型。结果表明:高光谱指数建立的单变量估算模型中,改进红边归一化植被指数(mNDVI705)、叶面叶绿素指数(LCI)、红边指数(Vog)、比值光谱指数(RVI603/407)、NDVI[603,407]高光谱指数建立的二次模型精度高,建模决定系数R2均超过了0.8,其中以高光谱指数为自变量建立的多元回归模型拟合R2值(0.886)最高。综合建模精度和模型验证精度,LCI指数构建的单变量模型以及基于高光谱指数的多元回归模型是估算芒萁叶片叶绿素含量最佳模型。本研究建立的叶绿素高光谱估算模型对快速、无损地监测水保植物芒萁生长具有重要意义。  相似文献   

6.
近年来,中国城市暴雨内涝频繁发生,已经发展成为一类严重的“城市病”。城市不透水面密度及其空间格局是形成暴雨内涝的一个重要影响因素。本文提出一种耦合蚁群算法和SCS-CN水文模型优化不透水面空间格局的方法,从而实现通过增加地面雨水渗透量达到减缓城市内涝发生的目的。首先应用Williams公式计算基于坡度修正的CN值,在此基础上计算地表径流量;然后设定径流系数最小化目标,耦合水文模型和蚁群算法对径流小区尺度的不透水面空间格局进行优化配置;最后应用景观格局指数对不透水面空间格局进行分析。研究结果表明:面对1年、5年、10年、20年、50年以及100年一遇重现期的1 h持续降雨事件,研究区优化后的不透水面空间格局可以分别减少径流系数21.19%、19.58%、19.38%、18.93%、18.41%和17.25%,在一定程度上缓解城市暴雨内涝的发生。在此基础上,提出面向暴雨内涝防治的城市更新优化措施建议:① 通过增加草地、花园、树木等植被绿化减少高不透水面类型的面积,并划分成更多中高不透水面类型的斑块;② 集聚低、中低等不透水面类型,从而加大连通性,形成更多的中高不透水面类型;③ 增加每个径流小区内斑块数量,增大斑块密度,减少其蔓延度和聚集度。  相似文献   

7.
同化叶面积指数和蒸散发双变量的冬小麦产量估测方法   总被引:1,自引:0,他引:1  
同化遥感信息到作物生长过程模拟模型,是估测区域作物产量的重要方法之一。同化变量的选取对同化结果精度至关重要。本文在标定WOFOST作物模型参数的基础上,优化了WOFOST模型的默认灌溉参数。利用ET和LAI作为同化变量,分别构建了时间序列趋势信息的代价函数和四维变分代价函数;采用SCE-UA算法最小化代价函数, 重新初始化WOFOST模型初始参数——作物初始干物质重、作物35 ℃生命期和灌溉量。最后利用MODIS LAI产品(MCD15A3)、MODIS ET产品(MOD16A2),同化到作物模型估测产量,并对比分析了水分胁迫模式下同化单变量(ET或LAI)和同化双变量(ET和LAI)的估产精度。结果表明:同化双变量ET和LAI的策略,优于同化单变量LAI或ET,双变量策略的冬小麦产量估测精度为R2=0.432,RMSE=721 kg/hm2;单独同化高精度LAI对提高估产精度具有重要作用,其冬小麦产量估测精度为R2=0.408,RMSE=925 kg/hm2;单独同化ET的趋势信息改善了WOFOST模型模拟水分平衡的参数,但是,产量估测精度(R2=0.013,RMSE=1134 kg/hm2)与模型模拟估测产量精度(R2=0.006,RMSE=1210 kg/hm2)相比改善效果有限。本研究为其他区域的遥感数据与作物模型的双变量数据同化的作物产量估测研究提供了参考价值。  相似文献   

8.
基于几何光学模型的人工林叶面积指数遥感反演   总被引:1,自引:0,他引:1  
 MODIS等全球叶面积指数(LAI)产品空间分辨率偏低(250m~7km),不能满足高空间分辨率遥感应用的需求。为获取大区域高空间分辨率LAI,有必要对物理模型用于高空间分辨率遥感影像LAI反演的可行性进行探讨。本文基于4-scale模型LAI反演算法,以甘肃省张掖为研究区,利用TM 影像实现研究区人工林LAI反演。反演算法考虑了反射率入射-观测角度对LAI与植被指数关系的影响和植被冠层尺度的集聚程度。利用地面实测LAI数据对反演结果进行验证与分析,并与NDVI经验模型进行对比,同时分析LAI反演结果对波段反射率敏感性。结果表明: 4-scale模型LAI反演结果与实测LAI一致性良好(R2=0.67,RMSE=0.50),且优于NDVI经验模型(R2=0.59,RMSE=0.67);当LAI大于2时,4-scale模型LAI反演算法误差小于NDVI经验模型,能有效避免植被指数的饱和现象;红光波段反射率减小时,引起4-scale模型LAI反演结果的变化幅度比其增大时更高,且影响程度大于近红外波段反射率。研究表明,4-scale 模型LAI反演算法可用于TM数据反演人工林LAI,模型应用普适性较强。  相似文献   

9.
针对现有遥感指数提取不透水面取结果中混有沙地、裸土等噪声的问题,本文在传统NDISI的形式基础上,提出一种新型的复合权重双差值不透水面指数(Composite-Weighted Double-Difference Impervious Surface Index, CWDDISI)。通过波段的2次差值扩大不透水面和裸地的光谱表现差距,并以植被指数和夜光灯数据作为约束权重,以此提高热红外波段中的不透水面信息比重的同时降低噪声地物的干扰。本文利用Landsat8 OLI-TIR、Landsat7 ETM+以及Sentinel-2A光谱数据,结合珞珈一号、DMSP-OL以及VIIRS/DNB夜光数据,选取广州市、西安市、咸阳市以及深圳市、北京市为实验区展开对比实验。研究结果:① CWDDISI具有很好的多区域适用性。在2018年的数据集上,相较于NDISI,CWDDISI在以山地为主的广州市试验区和以平原为主的西安市、咸阳市实验区中,其不透水面提取总精度分别提高了6.02%和7.56%,Kappa系数提高了0.078和0.104; ② CWDDISI具有很好的多时相数据适用性。实验选取2002年和2016年的Landsat7 ETM+多时相数据,以深圳市和北京市为实验区展开对比;相较于NDISI,CWDDISI的不透水面总精度分别提高了1.74%和2.13%,Kappa系数分别增加了0.028和0.076。通过实验对比结果可证明,CWDDISI能够克服传统不透水面指数难以区分不透水面信息和裸土区域的问题,为后续不透水面指数的研究提供参考价值。  相似文献   

10.
不透水面作为反应城市表征变化和区域城镇化的重要技术指标,其位置、图斑大小、空间分布等信息在地表水热循环和能量平衡等领域被广泛需求。传统方法大都基于单一时相信息提取不透水面,而忽略多时相所蕴含的丰富信息。因此,本文提出多时相信息融合的不透水面级联提取方法,利用Landsat-8 OLI遥感影像分析归一化植被指数(Normalized Difference Vegetation Index, NDVI)、改进的归一化水体指数(Modified Normalized Difference Water Index, MNDWI)和归一化建筑指数(Normalized Difference Building Index, NDBI)年内时序变化特点和典型地物间多时相波谱曲线的协同特征,并归纳不透水面多时相变化规律;再根据先验知识所获取的有效地表信息,进行多时相分级提取不透水面信息。此外,基于实地考察数据和同期2 m GF-1遥感影像屏幕数字化生成30 m不透水面图斑,进行精度验证、分析和对比单时相、四季相及多时相3种时序情况下的提取精度。结果表明:单时相提取不透水面总精度最低,四季相提取精度优于单时相,而多时相提取精度最高(精度可达93.66%,Kappa系数为0.81)。本方法在偏远城镇不透水面的有效识别中显露潜在优势,可为不透水面提取方法融合时序波谱特征提供新思路。  相似文献   

11.
基于QuickBird高分辨率影像、LandsatTM影像及夜间灯光数据,设计了集成CART(Classification and Regression Tree,)算法和多源遥感数据估算亚像元级不透水地表盖度的技术方案,采取适用于典型温带半干旱地区的ISP(Impervious Surface Percentage )提取方法,提取2001年和2011年北京城区不透水地表盖度,并将不透水地表盖度分为3类,ISP为10%~60%的区域为低密度区,60%~80%的区域为中密度区,大于80%的区域为高密度区。同时采用单窗算法反演2001年和2011年地表温度,对2001-2011年北京六环以内城区不同环路区域ISP发展趋势,以及其与地表温度的相关性进行分析。结果表明:(1)北京城区的不透水地表盖度变化主要集中在低密度区域,与之相比,中密度区域和高密度区域不透水地表盖度变化不大。2001-2011年来北京五环以内区域由于城建区较多,整体不透水地表变化并不明显,主要变化区域集中在五环至六环以内区域,其中低密度区增长明显,中密度区和高密度区主要增长集中在东部,可以看出,近年来五环至六环以内区域发展迅速,城建区范围不断扩大。(2)相较于2001年,2011年北京市中心地表温度明显上升,高温区聚集程度更为明显。其中四环以内地表温度与周边区域地表温度相比,温差明显增大。(3)通过对比2001年和2011年各密度区平均地表温度发现,相较于2001年,2011年北京市六环以内城区各密度区之间的地表温度差异更大,城市热岛效应更为明显。(4)2001年和2011年北京城区各环路区域内不透水地表盖度与地表温度均呈正相关。四环至六环区域,地表温度随不透水地表盖度变化的趋势相近。ISP在10%~20%的区域,地表温度随不透水地表盖度增高而上升的速率明显高于其他区域,ISP大于20%的区域地表温度上升速率下降,且趋于一致。  相似文献   

12.
城市不透水地表格局通过改变城市下垫面结构,引起地表反照率、比辐射率、地表粗糙度的变化,从而对地表辐射和能量平衡产生直接影响。不透水地表能增强地表显热通量,导致地表波文比升高,因此地表波文比的空间差异可推算城市人工不透水表面的分布。本研究选择北京市为实验区,应用Landsat TM卫星热红外遥感数据,采用PCACA模型及理论定位算法,对城市地表波文比进行反演,进而计算遥感地表波文比空间分布数据与城市不透水表面比例数据之间的相关关系,构建回归方程,实现北京市城区与近郊区人工不透水表面百分比分布的定量估算,最后以高分辨率遥感数据获取的城市人工不透水表面比例数据进行结果验证。结果表明,采用PCACA模型定量反演城市地表波文比数据,利用地表波文比数据与不透水表面比例数据之间的相关关系可实现城市人工不透水表面百分比数据的定量估算;波文比值不仅可在遥感像元水平定性判定不透水像元,还可对混合像元中的不透水比例进行较高精度的定量反演,其相关系数R²值为0.731。此方法有效地揭示了城市不透水下垫面对地表热通量影响的机制以及空间定量关系。  相似文献   

13.
采用青岛地区landsat-7ETM+的两时像遥感卫星影像以及相关的气象参数数据资料,利用单窗法和辐射传输方程法,对两幅不同时像的遥感数据进行温度反演,通过对NDVI、植被覆盖度、光谱分析、相关性分析、不透水面、下垫面的差异等进行分析并结合对当地实际的环境研究,讨论热岛效应的表现、温度等级分布和转移趋势,得出结论:研究区域的热岛效应显著,并且强度分布与该地区的工商业发展和居民区规模的扩大相关,随着城市化进程深入,向城乡交界处转移。  相似文献   

14.
城市暴雨内涝模拟模型优化与精度验证   总被引:2,自引:0,他引:2  
本文采用“Vegetation-Impervious Surface-Soil”模型和线性光谱混合分解方法,获取像元中不透水面、植被、土壤覆盖信息,用于计算SCS模型产流参数综合CN(Curve Number)值;基于土地利用类型,采用经验值与数值实验逐步求精相结合的方法,确定水动力汇流模型参数曼宁系数,并用实测积水数据验证两次参数修正的模拟效果。以上海中心城区为例进行验证,研究结果表明:①将采用V-I-S模型得到的不透水面、植被、土壤信息设定CN值,能够降低积水分布的极值化现象,提高SCS产流模型产流量和产流分布精度;②采用经验法和数值模拟逐步求精法,按土地利用类型设定曼宁系数,使各时段最大积水深度高于原模型,说明曼宁系数是汇流模型的敏感参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号