首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The amino acid (aa) sequences of the polypeptides encoded by five collagen genes of the nematodeCaenorhabditis elegans, col-6, col-7 (partial),col-8, col-14, andcol-19, were determined. These collagen polypeptides, as well as those encoded by the previously sequencedC. elegans collagen genescol-1 andcol-2, share a common organization into five domains: an amino-terminal leader, a short (30–33 aa) (Gly-X-Y) n domain, a non(Gly-X-Y) spacer, a long (127–132 aa) (Gly-X-Y) n domain, and a short carboyl-terminal domain. The domain organizations and intron positions of these polypeptides were compared with those of the polypeptides encoded byDrosophila andStrongylocentrotus type IV, and vertebrate types I, II, III, IV, and IX collagen genes; theC. elegans collagen polypeptides are most similar to the vertebrate type IX collagents. It is suggested that the collagen gene family comprises two divergent subfamilies, one of which includes the vertebrate interstitial collagen genes, and the other of which includes the invertebrate collagen genes and the vertebrate type IV and type IX collagen genes. Only the vertebrate interstitial collagen genes display clear evidence of evolution via the tandem duplication of a 54-bp exon.  相似文献   

2.
《Genomics》1995,29(3)
Genes that encode the vertebrate fibrillar collagen types I–III have previously been shown to share a highly conserved intron/exon organization, thought to reflect common ancestry and evolutionary pressures at the protein level. We report here the complete intron/exon organization ofCOL5A1,the human gene that encodes the α1 chain of fibrillar collagen type V. The structure ofCOL5A1is shown to be considerably diverged from the conserved structure of the genes for fibrillar collagen types I–III.COL5A1has 66 exons, which is greater than the number of exons found in the genes for collagen types I–III. The increased number of exons is partly due to the increased size of the pro-α1(V) N-propeptide, relative to the sizes of the N-propeptides of the types I–III procollagen molecules. In addition, however, the increased number of exons is due to differences in the intron/exon organization of the triple-helix coding region ofCOL5A1compared to the organization of the triple-helix coding regions of the genes for collagen types I–III. Of particular interest is the increase of 54 bp exons in this region ofCOL5A1,strongly supporting the proposal that the triple-helix coding regions of fibrillar collagen genes evolved from duplication of a 54 bp primordial genetic element. Moreover, comparison of the structure ofCOL5A1to the highly conserved structure of the genes of collagen types I–III provides insights into the probable structure of the ancestral gene that gave rise to what appears to be two classes of vertebrate fibrillar collagen genes.  相似文献   

3.
Type IV collagen is a major structural component in basement membranes. It is considerably different from the fibrillar collagens, types I-III. For example, unlike fibrillar collagens, the triple helical domain of type IV collagen is frequently interrupted by nonhelical regions. In this report, we demonstrate several overlapping genomic clones which cover most of the mouse alpha 1(IV) chain. Electron microscopic analysis of R-loops revealed that there were at least 28 exons within 35 kilobases of the gene segment. The sizes of six exons were determined by DNA sequence analysis to be 81, 178, 134, 73, 129, and 213 base pairs. These sizes do not appear to be related to the 54-base pair coding unit which is characteristic of fibrillar collagen exons, suggesting that the alpha 1 type IV collagen gene evolved differently from the fibrillar collagen genes.  相似文献   

4.
Summary The distribution of various extracellular matrix components was studied in frozen sections of embryonic (14–18 days) and early postnatal (birth and 4 days post parturn) dorsal mouse skin using monospecific antibodies and indirect immunofluorescence. Basement membrane zone components — type IV collagen, laminin and heparan sulphate proteoglycan — were found to be uniformly and unchangingly distributed along the dermal-epidermal junction. In contrast, the distribution of interstitial matrix components — types I and III collagen, and fibronectin — was heterogeneous and varied with the stages of hair development. Collagens became sparse and were eventually completely removed from the prospective dermal papilla and from a one-cell-thick sheath of dermal cells around hair buds. They remained absent from the dermal papilla throughout hair organogenesis. Fibronectin was always present around dermal papilla cells and was particularly abundant along the dermal-epidermal junction of hair rudiments, as well as underneath hair buds. In contrast, in interfollicular skin, collagens accumulated in increasing density, while fibronectin became progressively sparser. It thus appears that interstitial collagens and fibronectin are distributed in a manner which is related to hair morphogenesis. In morphogenetically active regions, collagen density is low, while that of fibronectin is high. Conversely, in histologically stabilized zones, collagen is abundant and fibronectin is sparse. This microheterogeneous distribution of interstitial collagens and of fibronectin might thus constitute part of the morphogenetic message that the dermis is known to transmit to the epidermis during the development of skin and of cutaneous appendages.  相似文献   

5.
Biosynthetic and structural properties of endothelial cell type VIII collagen   总被引:16,自引:0,他引:16  
A highly unusual endothelial cell collagen (Sage, H., Pritzl, P., and Bornstein, P., (1980) Biochemistry 19, 5747-5755) has been characterized in greater detail. Pulse-chase experiments with bovine aortic endothelial cells revealed two nondisulfide-bonded collagens, of apparent chain Mr = 177,000 and 125,000, with an estimated synthesis and secretion time of 75 min. Stepwise, quantitative processing to stable lower molecular weight forms as described for type I procollagen was not observed. Endothelial collagen was secreted over a temperature range of 24-37 degrees C and, prior to heat denaturation, did not display affinity for a gelatin-binding fragment of fibronectin coupled to Sepharose. The presence of a pepsin-resistant domain (Mr = 50,000) in both the soluble and cell layer-associated forms of this protein was shown by ion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Endothelial collagen was cleaved by vertebrate collagenase into several discrete fragments that differed in molecular weight from the characteristic alpha A and alpha B fragments generated from the interstitial collagens. Nontriple helical domains corresponding to the NH2- and COOH-terminal propeptides of other procollagen types were not found after incubation of endothelial collagen with bacterial collagenase. Additional evidence for the lack of extended noncollagenous sequences was provided by studies with mast cell proteases, which convert native procollagen to collagen but are unreactive toward native interstitial collagens. Endothelial collagen was not cleaved by these enzymes at 37 degrees C, but, as observed for interstitial collagen alpha chains, required prior heating at elevated temperatures for cleavage to occur. In view of this unique set of structural characteristics, and a distribution that is not restricted to the endothelium, we have designated this protein as type VIII collagen.  相似文献   

6.
Acid-soluble and pepsin-treated collagen V were prepared from fetal human bones or human placenta, respectively, to be tested for potential cell adhesion promoting activity. Out of 14 different collagen I-adhering cell lines, 10 showed distinct adhesion to collagen V. In all cases adhesion was followed by spreading. The activities of intact and pepsin-solubilized collagen V were similar, suggesting that the cell binding sites are restricted to the triple-helical domain of the molecules. Cell adhesion was also induced by the unfolded form of collagen V and after separation of the α chains by heparin affinity chromatography. Isolated α2(V) chains, rich in RGD sequences, were more efficient than isolated α1(V) chains. However, cell adhesion to native or denatured collagen V did not proceed by the same molecular mechanisms as shown by cell adhesion inhibition experiments. Cell adhesion to native collagen V was insensitive to the presence of RGD-containing synthetic peptides while adhesion to denatured collagen V was inhibited by the peptides. Furthermore, the results strongly suggested a major role for α1α1 and α2β1 integrins in the RGD-independent cell adhesion to native collagen V. These data indicate that collagen V is a specific adhesive substrate for different cell types. It also suggests that distinct sets of RGD-dependent and RGD-independent receptors mediate cell attachment to unfolded and native collagen V, respectively. This mechanism is shared by at least the interstitial collagens I and VI, which supports the hypothesis that when included in the triple-helical conformation of collagens, RGD sequences are either not accessible to cells or exhibit specific conformations recognized by different integrins.  相似文献   

7.
Several collagen genes have been isolated from the nematode Caenorhabditis elegans. The complete nucleotide sequences of two of these genes, col-1 and col-2, have been determined. These collagen genes differ from vertebrate collagen genes in that they contain only one or two introns, their triple-helical regions are interrupted by nonhelical amino acid sequences and they are smaller. A high degree of nucleotide and amino acid homology exists between col-1 and col-2. In particular, the regions around cysteines and lysines are most highly conserved. The C. elegans genome contains 50 or more collagen genes, the majority of which probably encode cuticle collagens; col-1 and col-2 apparently are members of this large family of cuticle collagen genes.  相似文献   

8.
We have isolated several overlapping cDNA clones encoding alpha 1(XI) collagen chains from human and rat cDNA libraries. Together the human cDNAs code for 335 uninterrupted Gly-X-Y triplets, and a 264-amino acid C-propeptide, while the rat cDNAs cover the entire C-propeptide and about a third of the triple-helical domain. Comparison of the human and rodent nucleotide sequences showed a 95% sequence similarity. The identification of the clones as alpha 1(XI) cDNAs was based on the complete identity between the amino acid sequences of three human alpha 1(XI) cyanogen bromide peptides and the cDNA-derived sequence. Examination of and the cDNA-derived amino acid sequence showed a variety of structural features characteristic of fibrillar-forming collagens. In addition, nucleotide sequence analysis of a selected portion of the corresponding human gene revealed the characteristic 54-base pair exon motif. We conclude therefore that pro-alpha 1 (XI) collagen belongs to the group of fibrillar collagen genes. We also suggest that the expression of this gene is not restricted to cartilage, as previously thought, since the cDNA libraries from which the clones were isolated, originated from both cartilagenous and noncartilaginous tissues.  相似文献   

9.
10.
Acid-soluble collagens were prepared from connective tissues in the abalone Haliotis discus foot and adductor muscles with limited proteolysis using pepsin. Collagen preparation solubilized with 1% pepsin contained two types of alpha-chains which were different in their N-terminal amino acid sequences. Accordingly, two types of full-length cDNAs coding for collagen proalpha-chains were isolated from the foot muscle of the same animal and these proteins were named Hdcols (Haliotis discus collagens) 1alpha and 2alpha. The two N-terminal amino acid sequences of the abalone pepsin-solubilized collagen preparation corresponded to either of the two sequences deduced from the cDNA clones. In addition, several tryptic peptides prepared from the pepsin-solubilized collagen and fractionated by HPLC showed N-terminal amino acid sequences identical to those deduced from the two cDNA clones. Hdcols 1alpha and 2alpha consisted of 1378 and 1439 amino acids, respectively, showing the primary structure typical to those of fibril-forming collagens. The N-terminal propeptides of the two collagen proalpha-chains contained cysteine-rich globular domains. It is of note that Hdcol 1alpha completely lacked a short Gly-X-Y triplet repeat sequence in its propeptide. An unusual structure such as this has never before been reported for any fibril-forming collagen. The main triple-helical domains for both chains consisted of 1014 amino acids, where a supposed glycine residue in the triplet at the 598th position from the N-terminus was replaced by alanine in Hdcol 1alpha and by serine in Hdcol 2alpha. Both proalpha-chains of abalone collagens contained six cysteine residues in the carboxyl-terminal propeptide, lacking two cysteine residues usually found in vertebrate collagens. Northern blot analysis demonstrated that the mRNA levels of Hdcols 1alpha and 2alpha in various tissues including muscles were similar to each other.  相似文献   

11.
J Francois 《Biochimie》1985,67(9):1035-1042
The collagen from the mesenteric sheath of the tenebrionid insect Tenebrio molitor was extracted by limited pepsin digestion and purified. This collagen was characterized using CM-cellulose chromatography, sodium-dodecylsulfate disc-gel electrophoresis and aminoacid analysis. This molecule was found to be assembled from three identical alpha chains and could be represented by the formula (alpha) 3. The amino acid composition is characteristic of collagen (one-third glycine, high iminoacid content), with high content of hydroxylysine and low content of alanine. Cyanogen bromide digests of these chains indicated that they are not related to any of the known invertebrate or vertebrate chains of interstitial collagens. The molecular weight (M = 280000D) and length (290 nm) were typical, and the banding patterns of the segment-long-spacing crystallites (SLS) and of the reconstitued fibrils were very similar to type I collagen. The denaturation temperature (Td) was 30.7 degrees C and correlated with the total pyrrolidine content as observed in other collagens (von Hippel & Wong's relation). It was concluded that the collagen from this insect showed the classical biochemical and biophysical features of other invertebrate interstitial "primitive" collagens.  相似文献   

12.
We have determined the amino acid sequence of the alpha chain of a fibril-forming collagen from the body wall of the marine invertebrate Riftia pachyptila (vestimentifera) by Edman degradation. The pepsin-solubilized collagen chain consists of a 1011-residue triple-helical domain and short remnants of N- and C-telopeptides. The triple-helical sequence showed one imperfection of the collagen Gly-Xaa-Yaa triplet repeat structure due to a Gly-->Ala substitution. This imperfection is correlated to a prominent kink in the molecule observed by electron microscopy. No strong sequence similarity was found with the fibril-forming vertebrate collagen types I-III, V and XI except for the invariant Gly residues. However, one of the two consensus cross-linking sequences was well conserved. The Riftia collagen shared with the vertebrate collagens many post-translational modifications. About 50% of the Pro and Lys residues are found in the Yaa position and were extensively hydroxylated to 4-hydroxyproline (4Hyp) and hydroxylysine (Hyl). A few proline residues in Xaa position were partially hydroxylated to either 4Hyp or 3Hyp. Despite the low sequence similarity, Riftia collagen was a potent adhesion substrate for two human cell lines. Cell adhesion could be inhibited by antibodies against the integrin beta 1 subunit but not by RGD peptides. This biological activity is apparently conserved in fibril-forming collagens of distantly related species but does not require the two RGD sequences present in Riftia collagen.  相似文献   

13.
Matrix metalloproteinases (MMPs) are essential for normal collagen turnover, recovery from fibrosis, and vascular permeability. In fibrillar collagens, MMP-1, MMP-8, and MMP-13 cleave a specific glycine–isoleucine or glycine–leucine bond, despite the presence of this sequence in other parts of the protein. This cut site specificity has been hypothesized to arise from a unique, relaxed super-secondary structure in this area due to local hydroxyproline poor character. In this study we examined the mechanism of interaction and cleavage of human type III collagen by fibroblast MMP-1 by using a panel of recombinant human type III collagens (rhCIIIs) containing engineered sequences in the vicinity of the cleavage site. Native and recombinant type III collagens had similar biochemical and structural characteristics, as indicated by transmission electron microscopy, circular dichroism spectropolarimetry, melting temperature and hydroxyproline analysis. A single amino acid change at the I785 cleavage site to proline resulted in partial MMP-1 resistance, but cuts were found in novel sites in the original cleavage region. However, the replacement of five Y-position residues by proline in this region, regardless of I785 variation, conferred complete resistance to MMP-1, MMP-8, MMP-13, trypsin, and elastase. MMP-1 had a decreased specific activity towards and reduced cleavage rate of rhCIII I785P but a Km similar to wild-type. Despite the reductions in protease sensitivity, MMP-1 bound to all of the engineered rhCIIIs with comparable affinity, indicating that MMP-1 binding is not sufficient for cleavage. The relaxed tertiary structure in the MMP cleavage region may permit local collagen unwinding by MMP-1 that enables site-specific proteolysis.  相似文献   

14.
Summary The distribution of types I, II, III, V and IX collagens in healing fractures of the rabbit tibia has been demonstrated by immunofluorescent techniques. It has also been shown that the mechanical stability of the healing fracture affects both the distribution and types of the collagens present.The initial fibrous matrix contains types III and V collagens; type I collagen was only located in this matrix if unfixed tissue was used. In mechanically stable fractures, cancellous bone forms over the entire periosteal surface by 5–7 days; type I collagen is laid down within the previous fibrous matrix. The trabeculae are heterogeneous in their collagen content. The cavities contain a matrix of types III and V collagens. Small nodules of cartilage may be present between 7 and 14 days; these contain types II and IX collagens.In mechanically unstable fractures, cancellous bone is initially formed away from the fracture gap. The fibrous tissue over the gap is replaced by cartilage; types II and IX collagens are laid down on the pre-existing fibrous matrix. The cartilage is replaced by endochondral ossification. At the ossification front, type I collagen is found around the chondrocyte lacunae of the spicules of cartilage. The new trabeculae contain a core of cartilage which is surrounded by a bone matrix of types I and V collagens.The fracture gaps are invaded by fibrous tissue, which contain types III and V collagens. This is later replaced by cancellous bone.  相似文献   

15.
Fibril-forming collagens in lamprey   总被引:1,自引:0,他引:1  
Five types of collagen with triple-helical regions approximately 300 nm in length were found in lamprey tissues which show characteristic D-periodic collagen fibrils. These collagens are members of the fibril forming family of this primitive vertebrate. Lamprey collagens were characterized with respect to solubility, mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, carboxylmethyl-cellulose chromatography, peptide digestion patterns, composition, susceptibility to vertebrate collagenase, thermal stability, and segment long spacing-banding pattern. Comparison with fibril-forming collagens in higher vertebrates (types I, II, III, V, and XI) identified three lamprey collagens as types II, V, and XI. Both lamprey dermis and major body wall collagens had properties similar to type I but not the typical heterotrimer composition. Dermis molecules had only alpha 1(I)-like chains, while body wall molecules had alpha 2(I)-like chains combined with chains resembling lamprey type II. Neither collagen exhibited the interchain disulfide linkages or solubility properties of type III. The conservation of fibril organization in type II/type XI tissues in contrast to the major developments in type I and type III tissues after the divergence of lamprey and higher vertebrates is consistent with these results. The presence of type II and type I-like molecules as major collagens and types V and XI as minor collagens in the lamprey, and the differential susceptibility of these molecules to vertebrate collagenase is analogous to the findings in higher vertebrates.  相似文献   

16.
Hydra, as an early diploblastic metazoan, has a well-defined extracellular matrix (ECM) called mesoglea. It is organized in a tri-laminar pattern with one centrally located interstitial matrix that contains type I collagen and two sub-epithelial zones that resemble a basal lamina containing laminin and possibly type IV collagen. This study used monoclonal antibodies to the three hydra mesoglea components (type I, type IV collagens and laminin) and immunofluorescent staining to visualize hydra mesoglea structure and the relationship between these mesoglea components. In addition, hydra mesoglea was isolated free of cells and studied with immunofluorescence and scanning electron microscopy (SEM). Our results show that type IV collagen co-localizes with laminin in the basal lamina whereas type I collagen forms a grid pattern of fibers in the interstitial matrix. The isolated mesoglea can maintain its structural stability without epithelial cell attachment. Hydra mesoglea is porous with multiple trans-mesoglea pores ranging from 0.5 to 1 μm in diameter and about six pores per 100 μm2 in density. We think these trans-mesoglea pores provide a structural base for epithelial cells on both sides to form multiple trans-mesoglea cell–cell contacts. Based on these findings, we propose a new model of hydra mesoglea structure.  相似文献   

17.
Two different collagens were isolated and characterized from the body walls of the vestimentiferan tube worm Riftia pachyptila and the annelid Alvinella pompejana, both living around hydrothermal vents at a depth of 2600 m. The acid-soluble cuticle collagens consisted of a long triple helix (2.4 microns for Alvinella, 1.5 microns for Riftia) terminating into a globular domain. Molecular masses of 2600 and 1700 kDa, respectively, were estimated from their dimensions. The two cuticle collagens were also quite different in amino acid composition, in agreement with their different supramolecular organizations within tissues. Interstitial collagens corresponding to cross-striated fibrils underneath the epidermal cells could be solubilized by digestion with pepsin and consisted of a single alpha-chain. They were similar in molecular mass (340 kDa) and length (280 nm) but differed in composition and banding patterns of segment-long-spacing fibrils. This implicates significant sequence differences also in comparison to fibril-forming vertebrate collagens, although all form typical quarter-staggered fibrils. The thermal stability of the worm collagens was, with one exception (interstitial collagen of Riftia), in the range of mammalian and bird collagens (37 to 46 degrees C), and thus distinctly above that of shallow sea water annelids. Yet, their 4-hydroxyproline contents were not directly correlated to this stability. About 20% of Riftia collagen alpha-chain sequence was elucidated by Edman degradation and showed typical Gly-X-Y repeats but only a limited homology (45 to 58% identity) to fibril-forming vertebrate collagens. A single triplet imperfection and the variable hydroxylation of proline in the X position were additional unique features. It suggests that this collagen represents an ancestral form of fibril-forming collagens not directly corresponding to an individual fibril-forming collagen type of vertebrates.  相似文献   

18.
19.
F Fuller  H Boedtker 《Biochemistry》1981,20(4):996-1006
Three pro-alpha 1 collagen cDNA clones, pCg1, pCg26, and pCg54, and two pro-alpha 2 collagen cDNA clones, pCg 13 and pCg45, were subjected to extensive DNA sequence determination. The combined sequences specified the amino acid sequences for chicken pro-alpha 1 and pro-alpha 2 type I collagens starting at residue 814 in the collagen triple-helical region and continuing to the procollagen C-termini as determined by the first in-phase termination codon. Thus, the sequences of 272 pro-alpha 1 C-terminal, 260 pro-alpha 2 C-terminal, 201 pro-alpha 1 helical, and 201 pro-alpha 2 helical amino acids were established. In addition, the sequences of several hundred nucleotides corresponding to noncoding regions of both procollagen mRNAs were determined. In total, 1589 pro-alpha 1 base pairs and 1691 pro-alpha 2 base pairs were sequenced, corresponding to approximately one-third of the total length of each mRNA. Both procollagen mRNA sequences have a high G+C content. The pro-alpha 1 mRNA is 75% G+C in the helical coding region sequenced and 61% G&C in the C-terminal coding region while the pro-alpha 2 mRNA is 60% and 48% G+C, respectively, in these regions. The dinucleotide sequence pCG occurs at a higher frequence in both sequences than is normally found in vertebrate DNAs and is approximately 5 times more frequent in the pro-alpha 1 sequence than in the pro-alpha 2 sequence. Nucleotide homology in the helical coding regions is very limited given that these sequences code for the repeating Gly-X-Y tripeptide in a region where X and Y residues are 50% conserved. These differences are clearly reflected in the preferred codon usages of the two mRNAs.  相似文献   

20.
J C Politz  R S Edgar 《Cell》1984,37(3):853-860
Caenorhabditis elegans synthesizes four morphologically distinct types of collagenous cuticles during its lifetime. We show that in RNA populations isolated early or late during the L4-to-adult molt, chick and nematode collagen DNAs hybridize strongly to RNAs of about 1.2 kb. Different but overlapping classes of correspondingly small collagenous polypeptides (310-460 residues in length) are translated in vitro from these two populations and from RNA isolated at the L2-to-dauer molt. Over 60 different collagenous translation products are identified. These collagenous polypeptides are smaller than mature cuticle collagens and smaller than most vertebrate collagens. They probably represent cuticle collagen precursors and the primary products of the cuticle collagen genes of C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号