首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 621 毫秒
1.
为方便调查宁夏全区荒漠草原植物种类及其分布,需对植物识别方法进行研究。针对YOLO v5s模型参数量大,对复杂背景下的植物不易识别等问题,提出一种复杂背景下植物目标识别轻量化模型YOLO v5s-CBD。改进模型YOLO v5s-CBD在特征提取网络中引入带有Transformer模块的主干网络BoTNet(Bottleneck transformer network),使卷积和自注意力相结合,提高模型的感受野;同时在特征提取网络融入坐标注意力(Coordinate attention, CA),有效捕获通道和位置的关系,提高模型的特征提取能力;引入SIoU函数计算回归损失,解决预测框与真实框不匹配问题;使用深度可分离卷积(Depthwise separable convolution, DSC)减小模型内存占用量。实验结果表明,YOLO v5s-CBD模型在单块Nvidia GTX A5000 GPU单幅图像推理时间仅为8 ms,模型内存占用量为8.9 MB,精确率P为95.1%,召回率R为92.9%,综合评价指标F1值为94.0%,平均精度均值(mAP)为95.7%,在VOC数据集...  相似文献   

2.
肉牛目标检测和数量统计是精细化、自动化、智能化肉牛养殖要解决的关键问题,受肉牛个体颜色及纹理相近和遮挡等因素的影响,现有肉牛目标检测方法实用性较差。本研究基于YOLO v5s网络与通道信息注意力模块(ECABasicBlock),提出了一种融合通道信息的改进YOLO v5s网络(ECA-YOLO v5s),在YOLO v5s模型的骨干特征提取网络部分添加了3层通道信息注意力模块。ECA-YOLO v5s网络实现了重度遮挡环境下多目标肉牛的准确识别。对养殖场监控视频分帧得到的肉牛图像采用了一种基于结构相似性的冗余图像剔除方法以保证数据集质量。数据集制作完成后经过300次迭代训练,得到模型的精确率为89.8%,召回率为76.9%,全类平均精度均值为85.3%,检测速度为76.9 f/s,模型内存占用量为24 MB。与YOLO v5s模型相比,ECA-YOLO v5s的精确率、召回率和平均精度均值分别比YOLO v5s高1.0、0.8、2.2个百分点。为了验证不同注意力机制应用于YOLO v5s的性能差异,本研究对比了CBAM(Convolutional block attention mo...  相似文献   

3.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。  相似文献   

4.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减...  相似文献   

5.
为在自然环境下自动准确地检测樱桃番茄果实的成熟度,实现樱桃番茄果实自动化采摘,根据成熟期樱桃番茄果实表型特征的变化以及国家标准GH/T 1193—2021制定了5级樱桃番茄果实成熟度级别(绿熟期、转色期、初熟期、中熟期和完熟期),并针对樱桃番茄相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进的轻量化YOLO v7模型的樱桃番茄果实成熟度检测方法。该方法将MobileNetV3引入YOLO v7模型中作为骨干特征提取网络,以减少网络的参数量,同时在特征融合网络中加入全局注意力机制(Global attention mechanism, GAM)模块以提高网络的特征表达能力。试验结果表明,改进的YOLO v7模型在测试集下的精确率、召回率和平均精度均值分别为98.6%、98.1%和98.2%,单幅图像平均检测时间为82 ms,模型内存占用量为66.5 MB。对比Faster R-CNN、YOLO v3、YOLO v5s和YOLO v7模型,平均精度均值分别提升18.7、0.2、0.3、0.1个百分点,模型内存占用量也最少。研究表明改进的YOLO v7模型能够为樱桃番茄果实的自...  相似文献   

6.
为实现香梨自动化采摘,本文以YOLO v7-S为基础模型,针对果园中香梨果实、果叶和枝干之间相互遮挡,不易精准检测的问题,设计了一种轻量化香梨目标检测M-YOLO v7-SCSN+F模型。该模型采用MobileNetv3作为骨干特征提取网络,引入协同注意力机制(Coordinate attention,CA)模块,将YOLO v7-S中的损失函数CIoU替换为SIoU,并联合Normalized Wasserstein distance (NWD)小目标检测机制,以增强网络特征表达能力和检测精度。基于傅里叶变换(Fourier transform,FT)的数据增强方法,通过分析图像频域信息和重建图像振幅分量生成新的图像数据,从而提高模型泛化能力。实验结果表明,改进的M-YOLO v7-SCSN+F模型在验证集上的平均精度均值(mAP)、精确率和召回率分别达到97.23%、97.63%和93.66%,检测速度为69.39f/s,与Faster R-CNN、SSD、YOLO v3、YOLO v4、YOLO v5s、YOLO v7-S、YOLO v8n、RT-DETR-R50模型在验证集上进行性能比较,其平均精度均值(mAP)分别提高14.50、26.58、3.88、2.40、1.58、0.16、0.07、0.86个百分点。此外,改进的M-YOLO v7-SCSN+F模型内存占用量与YOLO v8n和RT-DETR-R50检测模型对比减少16.47、13.30MB。本文提出的检测模型对成熟期香梨具有很好的目标检测效果,为背景颜色相近小目标检测提供参考,可为香梨自动化采摘提供有效的技术支持。  相似文献   

7.
为了实现复杂环境下农业机器人对番茄果实的快速准确识别,提出了一种基于注意力机制与改进YOLO v5s的温室番茄目标快速检测方法。根据YOLO v5s模型小、速度快等特点,在骨干网络中加入卷积注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,对绿色番茄目标特征给予更多的关注,提高识别精度,解决绿色番茄在相似颜色背景中难识别问题;通过将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高果实目标定位精度。试验结果表明,CB-YOLO网络模型对温室环境下红色番茄检测精度、绿色番茄检测精度、平均精度均值分别为99.88%、99.18%和99.53%,果实检测精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。将CB-YOLO模型部署到安卓手机端,通过不同型号手机测试,验证了模型在移动终端设备上运行的稳定性,可为设施环境下基于移动边缘计算的机器人目标识别及采收作业提供技术支持。  相似文献   

8.
智能虫情测报灯下害虫的精准识别和分类是实现稻田虫情预警的前提,为解决水稻害虫图像识别过程中存在分布密集、体态微小、易受背景干扰等造成识别精度不高的问题,提出了一种基于MS-YOLO v7(Multi-Scale-YOLO v7)轻量化稻飞虱识别分类方法。首先,采用稻飞虱害虫诱捕装置搭建稻飞虱害虫采集平台,获取的稻飞虱图像构成ImageNet数据集。然后,MS-YOLO v7目标检测算法采用GhostConv轻量卷积作为主干网络,减小模型运行的参数量;在Neck部分加入CBAM注意力机制模块,有效强调稻飞虱区别度较高的特征通道,抑制沉冗无用特征,准确提取稻飞虱图像中的关键特征,动态调整特征图中不同通道的权重;将SPPCSPS空间金字塔池化模块替换SPPFS金字塔池化模块,提高网络模型对各分类样本的特征提取能力;同时将YOLO v7模型中的SiLU激活函数替换为Mish激活函数,增强网络的非线性表达能力。试验结果表明,改进后的MS-YOLO v7在测试集上的模型平均精度均值(Mean average precision,mAP)为95.7%,精确率(Precision)为96.4%,召回率(Recall)为94.2%,与Faster R-CNN、SSD、YOLO v5、YOLO v7网络模型相比mAP分别提高2.1、3.4、2.3、1.6个百分点,F1值分别提高2.7、4.1、2.5、1.4个百分点。改进后的模型内存占用量、参数量、浮点运算数分别为63.7MB、2.85×107、7.84×1010,相比YOLO v7模型分别缩减12.5%、21.7%、25.4%,MS-YOLO v7网络模型对稻飞虱种间害虫均能实现高精度的识别与分类,具有较好的鲁棒性,可为稻田早期稻飞虱虫情预警提供技术支持。  相似文献   

9.
针对高架栽培模式下的大棚草莓,借鉴人体姿态检测算法,建立了改进YOLO v8-Pose模型对红熟期草莓进行识别与果柄关键点检测。通过对比YOLO v5-Pose、YOLO v7-Pose、YOLO v8-Pose模型,确定使用YOLO v8-Pose模型作为对红熟期草莓识别与关键点预测的模型。以YOLO v8-Pose为基础,对其网络结构添加Slim-neck模块与CBAM注意力机制模块,提高模型对小目标物体的特征提取能力,以适应草莓数据集的特点。改进YOLO v8-Pose能够有效检测红熟期草莓并准确标记出果柄关键点,P、R、mAP-kp分别为98.14%、94.54%、97.91%,比YOLO v8-Pose分别提高5.41、5.31、8.29个百分点。模型内存占用量为22 MB,比YOLO v8-Pose的占用量小6 MB。此外,针对果园非结构化的特征,探究了光线、遮挡与拍摄角度对模型预测的影响。对比改进前后的模型在复杂环境下对红熟期草莓的识别与果柄预测情况,改进YOLO v8-Pose在受遮挡、光线和角度影响情况下的mAP-kp分别为94.52%、95.48%、94.63%,较...  相似文献   

10.
浸种是玉米生产中重要的播前增种技术,对浸种过程中裂纹的高效检测是分析玉米胚乳裂纹变化规律的基础,是优良品种性状选育的关键之一,尚存在内部胚乳裂纹不可见、自动化检测程度不高等困难。基于CT扫描技术,在YOLO v5n检测网络的基础上,设计了YOLO v5-OBB旋转目标检测网络,其中OBB为有向目标边框,该网络使用旋转矩形框代替普通矩形框,并在Backbone部分加入位置注意力模块(CA),同时采用倾斜非极大值抑制算法(Skew-NMS)进行非极大值抑制得到最终预测框,以此实现长宽比大、方向不一的玉米胚乳裂纹检测。经过300次迭代训练,模型在测试集上的精确率P为94.2%,召回率R为81.7%,平均精度(AP)为88.2%,模型内存占用量为4.21 MB,单幅图像平均检测时间为0.01 s,与SASM、S2A-Net和ReDet旋转目标检测网络相比,AP分别提高15.0、16.9、7.0个百分点,单幅图像平均检测时间分别减少0.19、0.22、0.46 s,同时YOLO v5-OBB模型内存占用量分别为SASM、S2A-Net和ReDet模型的...  相似文献   

11.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。  相似文献   

12.
为实现作物病害早期识别,本文提出一种基于红外热成像和改进YOLO v5的作物病害早期检测模型,以CSPD-arknet为主干特征提取网络,YOLO v5 stride-2卷积替换为SPD-Conv模块,分别为主干网络中的5个stride-2卷积层和Neck中的2个stride-2卷积层,可以提高其准确性,同时保持相同级别的参数大小,并向下阶段输出3个不同尺度的特征层;为增强建模通道之间的相互依赖性,自适应地重新校准通道特征响应,引入SE机制提升特征提取能力;为减少模型计算量,提高模型速度,引入SPPF。经测试,改进后YOLO v5网络检测性能最佳,mAP为95.7%,相比YOLO v3、YOLO v4、SSD和YOLO v5网络分别提高4.7、8.8、19.0、3.5个百分点。改进后模型相比改进前对不同温度梯度下的作物病害检测也有提高,5个梯度mAP分别为91.0%、91.6%、90.4%、92.6%和94.0%,分别高于改进前3.6、1.5、7.2、0.6、0.9个百分点。改进YOLO v5网络内存占用量为13.755MB,低于改进前基础模型3.687MB。结果表明,改进YOLO v5可以准确快速地实现病害早期检测。  相似文献   

13.
甜椒在生长发育过程中容易产生畸形果,机器代替人工对甜椒畸形果识别和摘除一方面可提高甜椒品质和产量,另一方面可解决当前人工成本过高、效率低下等问题。为实现机器人对甜椒果实的识别,提出了一种基于改进YOLO v7-tiny目标检测模型,用于区分正常生长和畸形生长的甜椒果实。将无参数注意力机制(Parameter free attention module, SimAM)融合到骨干特征提取网络中,增强模型的特征提取和特征整合能力;用Focal-EIOU(Focal and efficient intersection over union)损失替换原损失函数CIOU(Complete intersection over union),加快模型收敛并降低损失值;使用SiLU激活函数代替原网络中的Leaky ReLU,增强模型的非线性特征提取能力。试验结果表明,改进后的模型整体识别精确度、召回率、平均精度均值(Mean average precision, mAP)mAP0.5、mAP0.5-0.95分别为99.1%、97.8%、98.9%、94.5%,与改进前相比,分别提升5.4、4.7、2.4、10.7个百分点,模型内存占用量为 10.6MB,单幅图像检测时间为4.2ms。与YOLO v7、Scaled-YOLO v4、YOLOR-CSP等目标检测模型相比,模型在F1值上与YOLO v7相同,相比Scaled-YOLO v4、YOLOR-CSP分别提升0.7、0.2个百分点,在mAP0.5-0.95上分别提升0.6、1.2、0.2个百分点,而内存占用量仅为上述模型的14.2%、10.0%、10.0%。本文所提出的模型实现了小体量而高精度,便于在移动端进行部署,为后续机械化采摘和品质分级提供技术支持。  相似文献   

14.
针对玉米种子在外观品质检测中需要快速识别与定位的需求,提出了一种基于改进YOLO v4的目标检测模型,同时结合四通道(RGB+NIR)多光谱图像,对玉米种子外观品质进行了识别与分类。为了减少改进后模型的参数量,本文将主干特征提取网络替换为轻量级网络MobileNet V1。为了进一步提升模型的性能,通过试验研究了空间金字塔池化(Spatial pyramid pooling, SPP)结构在不同位置上对模型性能的影响,最终选取改进YOLO v4-MobileNet V1模型对玉米种子外观品质进行检测。试验结果表明,模型的综合评价指标平均F1值和mAP达到93.09%和98.02%,平均每检测1幅图像耗时1.85 s,平均每检测1粒玉米种子耗时0.088 s,模型参数量压缩为原始模型的20%。四通道多光谱图像的光谱波段可扩展到可见光范围之外,并能够提取出更具有代表性的特征信息,并且改进后的模型具有鲁棒性强、实时性好、轻量化的优点,为实现种子的高通量质量检测和优选分级提供了参考。  相似文献   

15.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   

16.
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。  相似文献   

17.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号