首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
针对传统Buck-Boost均衡电路在电池数量增多时,会造成均衡时间长,效率低等问题,提出了一种改进Buck-Boost的分层均衡电路拓扑结构。该均衡电路在组内电池与电池或电池组与电池组之间采用双向Buck-Boost均衡器,利用电感储存和传递能量,在组间两电池包之间采用外加外部电源的反激式变压器进行不同程度的充电来达到均衡。以电池的荷电状态(SOC)作为均衡变量,在MATLAB/Simulink中搭建了8节串联锂电池组仿真模型,4节串联电池为一个电池包,两个电池包之间采用组间均衡,设置8节电池直接均衡为对照组。结果表明:在静置状态下,分层均衡所需时间比直接均衡快9.18%,且均衡后分层均衡的容量比直接均衡高1.1%。在外加电源下,能较快将电池组充满电,验证了所提均衡电路的有效性。  相似文献   

2.
锂离子电池组的不一致性导致电池组增加过充电或过放电风险,使电池易于老化,进而使电池组的可用容量和寿命下降。基于此问题设计了一种改进的Buck-Boost均衡电路,使串联电池形成能量循环回路,提高均衡速度。根据锂离子电池的开路电压(OCV)-荷电状态(SOC)曲线的特点,将电压和荷电状态共同作为均衡变量。采用模糊逻辑控制(FLC)动态调节均衡电流,减少均衡时间,提高效率。在Matlab/Simulink仿真平台上搭建了均衡系统,将传统Buck-Boost均衡电路与改进后的Buck-Boost均衡电路进行了比较,仿真结果表明,改进后Buck-Boost均衡电路的均衡时间缩短了34%。与均差算法相比,静态、充放电条件下FLC均衡时间分别减少了51%、48%、46%,能量效率提高4.88%,电池的不一致性降低。  相似文献   

3.
提出了一种基于Buck-Boost电路的新型均衡电路,实现了锂离子串联电池组充放电均衡。根据均衡能量流向,采取两种不同的均衡策略:电池组放电时,均衡能量由电池组向组内荷电状态(state of charge,SOC)较低的单体电池转移;电池组充电时,均衡能量由电池组中SOC较高的单体电池向电池组转移。以单体电池开路电压在线估计为基础,运用开路电压法估算SOC,选取SOC值在一定阈值范围之外的单体电池作为均衡对象,对6节串联的磷酸铁锂电池进行了充放电均衡实验。实验结果表明,该方案可以有效减小单体电池间的不一致性,提升电池组的整体性,同时提高了电池组充放电容量。  相似文献   

4.
针对Buck-Boost均衡电路中开关频繁通断导致均衡效率降低的问题,文中对传统的Buck-Boost电路进行改进,设计可实现开关管的零电压导通的准谐振电路,有助于减小开关损耗,提高均衡电路的效率。为减少开关管的通断次数,并缩短均衡时间,均衡策略采用全局优化视角,分段选择电压和SOC作为目标均衡变量,并提出电池单体间、单元间及模组之间的自适应分组均衡策略。以8个电池串联的电池组为例,设计静置、充电、放电和浮充均衡实验,结果表明,与传统方案相比,提出的均衡电路和均衡策略在均衡效率和速度上有显著提升,可助力电池组的整体性能提升及其延寿。  相似文献   

5.
在梯次电池储能应用中,梯次电池间存在的较大不一致性使得电池组在充放电过程中更容易出现过充和过放现象,限制了电池组整体的可用容量甚至造成安全隐患。针对该问题,本文提出了一种基于隔离型双半桥DC-DC变换器的有源均衡电路。该均衡电路由N+5个开关(N为电池数目)构成的开关阵列和隔离型双半桥DC-DC变换器构成,保证了电路的灵活性。在主电路工作原理分析的基础上,进一步提出了一种基于SOC的分状态均衡控制策略,在电池组充电、放电和静置三种不同状态下,采用对应的均衡策略实现电池组能量平衡。最后对5节串联锂离子电池进行了均衡实验,实验结果表明相比不使用均衡器的电池组,该方法在静置、充电、放电状态下分别提升了12%,9.9%,17.5%的可用容量,证明了该方法的可行性及有效性。  相似文献   

6.
为提高电池重组时的均衡效率,在传统Buck-Boost均衡拓扑电路的基础上,设计了一种锂电池组双层均衡拓扑电路。组内采用Buck-Boost电路均衡,组间利用双向反激变压器进行均衡。均衡控制策略采用自适应模糊PID算法,以电池荷电状态(state of charge, SOC)为均衡变量,利用模糊控制算法对PID参数进行调节,缩短了均衡时间,提高了均衡效率。在Matlab/Simulink中搭建了锂电池组双层均衡拓扑电路和自适应模糊PID控制算法模型。实验结果表明:在不同工作状态下,所提出的电池组均衡拓扑及其控制策略将均衡时间效率平均提高了58.36%,验证了该方案的有效性。  相似文献   

7.
为了改善电池组的一致性,提出了一种高效的锂离子电池组均衡电路,同时研究了适用于电池组均衡电路的均衡策略。设计了一种可充可放的能量转移均衡电路,该电路支持对单体电池进行均衡充电及均衡放电操作,同时也可利用电池组能量对多节单体电池进行均衡充电。提出的均衡策略根据运行过程中实时的电压值分析得到电池组中各单体电池需要均衡的程度,结合单体电池SOC最终给出适合于上述均衡电路的均衡状态,进而对单体电池进行均衡。并利用实验数据证明均衡电路与均衡策略的有效性。  相似文献   

8.
在串联充放电过程中,动力电池组容易出现电池过充和过放现象,这会缩短电池组寿命并导致安全隐患,电池均衡电路能够消除电池差异对电池成组使用的影响,是提升动力电池组性能的重要手段。提出一种基于推挽变换器的模块化电池均衡电路,该均衡电路由多个推挽变换器均衡模块单元构成,只需同步控制每一个均衡模块的开关器件,便能实现能量从高电压电池到低电压电池的直接传输,缩短了能量传输路径。同时,通过采用交流耦合方式在各单体电池之间进行能量传递,消除了均衡模块间的交叉影响,增加了电路的可扩展性。对提出的均衡电路进行详细分析,并与现有的均衡电路进行性能对比,最后通过实验测试验证了理论分析的正确性。  相似文献   

9.
针对锂电池组在充放电过程中出现能量不一致的问题,本文提出了两级均衡拓扑,分为组内和组外。电池组内采用基于电感的环式结构均衡电路,实现了在相邻单体电池及首尾电池之间的能量双向环式转移新型主动均衡。电池组外采用基于单电感的集中式均衡拓扑,可以实现组间任意电池组之间的均衡。在均衡控制策略方面,以电池荷电状态为均衡变量,设计了模糊逻辑控制算法动态调整均衡电流,以减少均衡时间和提升均衡效率。使用MATLAB/Simulink软件进行模型搭建并仿真,实验结果表明,本文提出的能量传递拓扑比传统Buck-Boost电路在相邻单体间能量传递的拓扑要减少了24.46%的均衡时间。此外,与模糊逻辑控制算法相比,使用模糊逻辑控制算法在静置和充放电条件下,均衡后单体电池的标准差下降了约11%。验证了该均衡方案的可行性。  相似文献   

10.
高鹏飞  晋贞贞 《电工材料》2021,(4):40-43,48
针对磷酸铁锂电池组各电池单体荷电状态(SOC)不均衡问题,本文在详细分析基于Buck-Boost变换器的电感双向均衡电路的基础上,提出了一种改进型电感双向均衡电路和均衡策略.此控制策略在未增加硬件成本的前提下,以基于扩展卡尔曼滤波法的电池SOC作为均衡变量,采用主动式段内、段间均衡方式,实现了各单体电池间均衡过程的平滑过渡.最后,通过仿真,进一步验证了该改进均衡电路有效性和可行性.  相似文献   

11.
提出一种应用于直流不间断供电系统蓄电池组单体电池均衡的桥式开关矩阵拓扑,利用LC均衡器进行能量的存储和转移,实现了能量从电池组中荷电状态(SOC)最高的单体电池向最低的单体电池转移,给出了参数设计方法,在避免迂回均衡带来蓄电池充放电次数增多的同时,延长了蓄电池的寿命,提高了均衡和能量转移效率。在Matlab-Simulink环境下搭建了均衡系统模型并进行了仿真,结果验证了所提出均衡策略的有效性和可行性。  相似文献   

12.
可重构均衡电路能较好地兼顾元器件使用数目,均衡转换效率,满足电池组内任意单体电池进行均衡的需求,但对电池组进行均衡时负载电压会有波动。在保留可重构均衡电路优点的前提下,较好地解决上述问题,提出带有附加电源的可重构均衡电路。在均衡过程中,通过让附加电源代替被均衡的单体电池,为负载供电,达到稳定负载电压的目的。在此基础上,文中还提出一种均衡方法,不同于将电池荷电状态(State of Charge,SOC)均衡至目标值的传统方法,通过留有一定的裕量,减少因电池容量差异,导致存在不必要均衡现象的发生次数,间接地提高均衡速度。采用此均衡电路及均衡方法对串联的8节具有不同初始SOC的18650电池进行了均衡实验,其中1节电池为附加电源。实验结果表明,所提出的均衡电路配合所提出的均衡方法,可以较好地对电池组进行均衡。  相似文献   

13.
在采用传统电荷转移式均衡方法中,多个单体电池之间存在着反复循环充放电现象,进而产生锂离子电池组均衡时间长、效率低的问题.针对此问题,提出一种动态式双阈值主被动均衡控制策略.首先,主被动均衡电路的开关阵列包含有N+1个开关(N为电池数目),在减少元器件数目的同时,主动均衡提高均衡效率,被动均衡在充电末期延长电池反应时间,...  相似文献   

14.
针对锂电池组在充放电过程中出现能量不一致的问题,采用传统的Buck-Boost均衡电路和Flyback均衡电路的均衡方法,提出一种可减小电路尺寸、提高均衡速度和均衡效率的基于耦合绕组的新型主动均衡电路。通过对耦合绕组的选择性充放电,会有三种不同的工作模式来实现单体之间的能量转移,并调节PWM驱动信号占空比来提高均衡器的工作效率。在均衡控制策略方面,根据锂电池开路电压(OCV)与荷电状态(SOC)之间的一一对应关系,提出了基于电压和SOC双变量的均衡控制策略,主要是通过电压快速均衡和修正均衡以及SOC均衡阶段同时实现电压均衡和SOC均衡,更加合理地保证电池组动态性能一致。实验结果表明,该方案可以减少电池组的均衡时间,并且降低了能量损耗,提高了均衡效率,使电池组的整体性能达到最优状态。  相似文献   

15.
针对串联锂离子电池组在均衡过程中出现均衡时间长、能量损耗大的问题,设计了一种两级均衡拓扑,并针对该拓扑设计了一种基于电池荷电状态的变论域模糊逻辑控制策略。所提拓扑在电池组内采用改进型Buck-Boost电路,优化了均衡路径;电池组间采用集中式的单电感均衡电路,可以实现任意电池组间的均衡。所提策略在模糊逻辑控制的基础上引入伸缩因子对输入论域灵活调节,通过对均衡电流的精准调整进一步提高均衡速度和能量利用率。最后搭建均衡系统进行验证,结果表明,本文拓扑比分组Buck-Boost拓扑减少了约12.53%的均衡时间。在相同的静置和充放电条件下,与FLC算法相比,本文策略不仅减少了约20.98%的均衡时间,且提高了约7%的能量利用率。验证了本文均衡方案的可行性。  相似文献   

16.
充电均衡可以提高串联电池组中各电池的均衡性。在实际选用均衡电路时需要考虑到均衡效果,本文选择两种均衡电路,通过对两组电池组的均衡实验,对均衡电路进行比较研究。实验表明,当电池组中电池数量多、电压差异大时,反激式均衡电路比Buck—B00st电路效率更高。本文研究内容有助于方便、有效地衡量均衡效果,以便根据应用场合选择合适的均衡电路。  相似文献   

17.
纯电动汽车动力锂电池均衡充电的研究   总被引:2,自引:0,他引:2  
郭军  刘和平  徐伟  刘平 《电源技术》2012,36(4):479-482
针对电动汽车动力电池组中单体电池的不均衡将减少电池使用寿命和电动车单次充电行驶距离的问题,设计了均衡充电装置。通过对16节串联电池组的大量充放电试验得到电池电压之间的分散性曲线,并分析了均衡充电的必要性。根据锂电池充电特性,对电池不均衡度进行了数学建模,并提出单体电池SOC(State of charge)相对浓度和伪均衡的概念。均衡充电主电路采用反激变换器完成高频变压器的设计,同时通过软件实现均衡装置的自启动和结束,并采用两点标定法来提高A/D采样精度。最后采用Saber仿真软件和实验对设计进行了验证。结果表明:实现了恒流和恒压控制,并将电池分散性降低了61.86%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号