首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A virus, isolated from faba bean (Vicia faba) obtained from Algeria, was readily recognized as a tobravirus by its particle sizes and morphology. Pea (Pisum sativum) and French bean (Phaseolus vulgaris) characteristically reacted to the isolate like pea early-browning virus (PEBV), but faba bean,Antirrhinum majus, Nicotiana rustica, andN. tabacum reacted with line-pattern symptoms which were unusually brilliant on theNicotiana species. In electronmicroscope decoration tests, the isolate did not react with an antiserum to the Dutch type strain of PEBV, but with one to the broad bean yellow band (BBYB) serotype from Italy. It resembles this serotype in reaction on faba bean, but seems to differ appreciably onN. rustica, N. tabacum, andPetunia hybrida. It is described as a deviant isolate of the BBYB serotype of PEBV.All thirteen faba-bean genotypes tested were found to be susceptible to the Algerian isolate and two Dutch type strain isolates of the virus, and to react with erratic line-pattern symptoms to the Algerian isolate only. All ten genotypes of chickpea (Cicer arietinum) tested reacted hypersensitively, and four out of ten genotypes of lentil (Lens culinaris) were susceptible to the virus but reacted differentially to the three isolates. Seed transmission of PEBV, including the new isolate, in faba bean is confirmed (9% for the Algerian isolate, and over 45% for one of the Dutch type strain isolates), and seed transmission of the virus in a non-legume (N. rustica, 4%) is herewith first reported. This is the first report on the occurrence of the BBYB serotype of PEBV outside Italy, and of PEBV outside Morocco in North Africa.  相似文献   

2.
Biological indexing of faba-bean samples collected during an earlier virus survey in Morocco revealed variation in symptom severity among isolates of broad bean mottle virus (BBMV). When seven selected isolates from Morocco and three from Algeria, Sudan, and Tunisia were further compared, they could be divided into mild, severe, and intermediate isolates, according to their pathogenicity on a number of food-legume genotypes tested. The Moroccan isolate SN1 and the Sudanese SuV256 were very mild, and deviant also in their effect onGomphrena globosa, whereas the Tunisian TV75-85 and the Moroccan VN5 were virulent. Representative isolates were indistinguishable, however, in coat-protein molecular weights, and they reacted similarly to the antisera to a Moroccan and a Syrian isolate in electro-blot immunoassay.Promising ICARDA breeding lines and accessions—ten each of pea and lentil, nine of chickpea, and twelve of faba bean-were all found vulnerable (susceptible and sensitive) to all isolates. Within each food-legume species, vulnerability varied from high to moderate, and no immunity was detected. Virus concentrations in faba-bean lines suggest that isolates differ in virulence rather than in aggressiveness, and that the differences in vulnerability among the lines are due to differences in sensitivity rather than in susceptibility.When pooled seed samples were germinated and seedlings were tested for BBMV in DASELISA, the virus was found seed-transmitted in faba bean, chickpea, and pea at transmission rates of ca 1.2, 0.9, and 0.1%, respectively. This is the first report on seed transmission of BBMV in faba bean, when occurring on its own, and the first record of such seed transmission in chickpea and pea.  相似文献   

3.
In a survey for viruses of cultivated legumes in West Asia and North Africa, pea seed-borne mosaic virus (PSbMV) was found in faba bean, lentil and pea. Using ELISA, it was detected in 107 out of 1554 faba bean samples and 40 out of 496 lentil samples with virus-like symptoms collected in Algeria, Egypt, Ethiopia, Jordan, Lebanon., Libya, Morocco, Sudan, Tunisia and Turkey.A pea isolate (SP9-88) from Syria was further characterized. Out of 57 plant species tested, 35 were found susceptible, 19 of which are newly reported hosts of the virus. The virus was transmitted efficiently in the non-persistent manner by five aphid species, especiallyMyzus persicae. Purification from systemically infected faba bean plants yielded 10–15 mg of purified virus per kg of infected tissue. Sap-inoculation of the food and forage legume species chickpea, faba bean, lentil, pea,Vicia narbonensis, V. sativa, Lathyrus ochrus andL. sativus at flowering stage led to 66.0, 40.5, 44.6, 49.2, 31.7, 7.5, 35.7 and 12.0% yield loss, respectively, and to seed-transmission, rates of 0.7, 6.0, 10.8, 1.1, 0.3, 0.2 and 0.4%, respectively. No transmission was detected in chickpea seed embryo axes. However, the virus was detected in the seed coat of SPbMV-infected chickpea at an estimated rate of 1.81%.  相似文献   

4.
A total of 52 faba-bean (Vicia faba L.) fields, located in the main growing areas in Morocco were surveyed for viruses. From 240 samples with symptoms suggestive of virus infection, the following viruses were detected using electron microscopy, serology, and biological indexing: Alfalfa mosaic virus (AMV), bean yellow mosaic virus (BYMV), broad bean mottle virus (BBMV), broad bean stain virus (BBSV), broad bean true mosaic virus (BBTMV), pea earlybrowning virus (PEBV), pea enation mosaic virus (PEMV), pea seed-borne mosaic virus (PSbMV), and a complex of luteoviruses including bean leafroll virus (BLRV). This is the first report of the occurrence of BBTMV, PEMV, PSbMV, and the luteoviruses (including BLRV) of faba bean in Morcco. The luteoviruses and BBMV were found to be the most prevalent. They were detected in 56 and 50%, respectively, of the surveyed fields; while AMV, BBSV, and PEBV were found in single fields only. The remaining viruses were less prevalent, and were detected in a range of 4 to 15% of the fields surveyed. The incidences per field of the prevalent viruses varied and ranged from 1 to 33% for BBMV and up to 20% in the case of luteoviruses. BBMV was found confined to the central and northern parts of the country, BBTMV and PEMV mainly occurred in the central area, while the luteoviruses and BYMV were spread over the faba-bean growing regions of the country.  相似文献   

5.
为明确我国热带和亚热带地区蚕豆Vicia faba和豌豆Pisum sativum锈病的病原菌种类,通过致病性测定和ITS序列系统发育分析对来自我国云南省玉溪市的4份豌豆锈菌分离物及云南、广西、重庆和四川省(区、市)的5份蚕豆锈菌分离物进行系统鉴定。结果显示,分离自豌豆的锈菌WX1分离物对蚕豆和豌豆均具有高致病性,在侵染叶片上产生大量锈子器;分离自蚕豆的锈菌CX3分离物仅对蚕豆具有高致病性,能在叶片上产生大量夏孢子,而对豌豆的致病性相对较低,仅产生少量的夏孢子堆;分离物WX1和CX3对小扁豆和鹰嘴豆不具有致病性。基于ITS序列系统发育分析表明,所有不同寄主来源的蚕豆单胞锈菌分离物均聚类于一个系统发育组,但分离自蚕豆和豌豆的分离物分别聚类在不同的亚组。表明分离自云南省玉溪市豌豆上的蚕豆单胞锈菌Uromyces viciae-fabae应为豌豆专化型,定名为U. viciae-fabae ex P. sativaum,而来源于云南、广西、重庆和四川省(区、市)的蚕豆锈病病原菌为蚕豆专化型U. viciae-fabae ex V. faba。  相似文献   

6.
One of the faba bean viruses found in West Asia and North Africa was identified as broad bean mottle virus (BBMV) by host reactions, particle morphology and size, serology, and granular, often vesiculated cytoplasmic inclusions. Detailed research on four isolates, one each from Morocco, Tunisia, Sudan and Syria, provided new information on the virus.The isolates, though indistinguishable in ELISA or gel-diffusion tests, differed slightly in host range and symptoms. Twenty-one species (12 legumes and 9 non-legumes) out of 27 tested were systemically infected, and 14 of these by all four isolates. Infection in several species was symptomless, but major legumes such as chickpea, lentil and especially pea, suffered severely from infection. All 23 genotypes of faba bean, 2 of chickpea, 4 of lentil, 11 out of 21 ofPhaseolus bean, and 16 out of 17 of pea were systemically sensitive to the virus. Twelve plant species were found to be new potential hosts and cucumber a new local-lesion test plant of the virus.BBMV particles occurred in faba bean plants in very high concentrations and seed transmission in this species (1.37%) was confirmed.An isolate from Syria was purified and two antisera were produced, one of which was used in ELISA to detect BBMV in faba bean field samples. Two hundred and three out of the 789 samples with symptoms suggestive of virus infection collected in 1985, 1986 and 1987, were found infected with BBMV: 4 out of 70 (4/70) tested samples from Egypt, 0/44 from Lebanon, 1/15 from Morocco, 46/254 from Sudan, 72/269 from Syria and 80/137 from Tunisia. This is the first report on its occurrence in Egypt, Syria and Tunisia. The virus is a potential threat to crop improvement in the region.Samenvatting Eén van de in West-Azië en Noord-Afrika in faba-boon aangetroffen virussen werd geïdentificeerd als het tuinbonevlekkenvirus (broad bean mottle virus) op grond van waardplantreacties, deeltjesvorm en-grootte, serologische eigenschappen en granulaire, vaak gevacuoliseerde celinsluitsels. Verder onderzoek aan vier isolaten uit respectievelijk Marokko, Tunesië, Soedan en Syrië verschafte nieuwe informatie, over het virus.De in ELISA of gel-diffusietoetsen serologisch niet te onderscheiden isolaten verschilden enigszins in waardplantenreeks en symptomen. Van 27 getoetste plantesoorten werden 21 systemisch geïnfecteerd (12 vlinderbloemigen, en 9 niet-vlinderbloemigen) waarvan 14 door alle vier isolaten. In vele ervan was de infectie symptoomloos, maar belangrijke als gewas geteelde vlinderbloemigen, zoals erwt, linzen en kekererwt, leden ernstig onder aantasting. Alle 23 getoetste faba-boongenotypen, beide van kekererwt, alle vier van linzen, 11 van de 21 getoetste vanPhaseolus-boon en 16 van de 17 van erwt bleken systemisch gevoelig voor het virus. Twaalf plantesoorten, bleken nieuwe potentiële waardplanten en komkommer een nieuwe lokale-lesietoetsplant voor het virus te zijn.In faba-boneplanten kwam, het virus in hoge concentratie voor en overdracht met zaad (1.37%) in deze soort kon worden bevestigd.Een Syrisch isolaat werd gezuiverd en twee antisera werden bereid, waarvan één werd gebruikt voor de detectie van het virus in te velde verzamelde monsters. Van 789 in 1985 tot en met 1987 verzamelde bladmonsters, met symptomen die deden denken aan virusinfectie, bleken 203 het virus te bevatten en wel 4 van de 70 (4/70) uit Egypte, 0/44 uit Libanon, 1/15 uit Marokko, 46/254 uit Soedan, 72/269 uit Syrië en 80/137 uit Tunesië. Het virus was nog niet eerder aangetoond in Egypte, Syrië en Tunesië.De grote verbreiding, grote kunstmatige waardplantenreeks, overdracht met zaad, en pathogeniteit voor een aantal belangrijke vlinderbloemige gewassen maken het virus tot een potentiële bedreiging van de programma's tot verbetering van de teelt van de bedoelde gewassen in het betrokken gebied.  相似文献   

7.
In controlled near-optimum conditions (18 °C), monocyclic sporulation capacity and spore infection efficiency were assessed for faba bean rust on the first and second leaves of field bean. After a latency period of 8–10 days, lesions sporulated duringc. 50 days. Spore production on the second leaf,c. 9×104 spores per lesion, was two times as high as spore production on the first leaf. Infection efficiency was similar for both leaf layers, with a mean value of 0.11 lesion per inoculated spore. Infection efficiency decreased strongly when spores originated from mother lesions older than 20 days. Three life-table statistics (the net reproduction numberR o , the mean generation timeT g , and the maximum relative growth rater max ) were calculated.R o was larger andT g was longer for the second than for the first leaf, butr max was nearly the same for both leaf layers (0.31–0.33 day–1).r max was compared with the exponential growth rater measured in a field experiment. From the difference between the two rates, the fraction of inoculum lost in field conditions was estimated at 0.54–0.94. The life-table statistics were also compared to those of other legume rusts, and implications of life-table analysis for comparative epidemiology were discussed.  相似文献   

8.
Research on root rot pathogens of peas in the Netherlands has confirmed the prevalence ofFusarium solani, F. oxysporum, Pythium spp.,Mycosphaerella pinodes andPhoma medicaginis var.pinodella. Aphanomyces euteiches andThielaviopsis basicola were identified for the first time as pea pathogens in the Netherlands. Other pathogens such asRhizoctonia solani andCylindrocarpon destructans were also found on diseased parts of roots. F. solani existed in different degrees of pathogenicity, and was sometimes highly specific to pea, dwarf bean of field bean, depending on the cropping history of the field.A. euteiches was specific to peas, whereasT. basicola showed some degree of physiological specialization.  相似文献   

9.
N. GRECO  M. DI VITO 《EPPO Bulletin》1994,24(2):393-398
Several endoparasitic nematodes have been reported on leguminous plants in the Mediterranean area. The most widespread are the root-lesion nematodes Pratylenchus mediterraneus, P. penetrans and P. thornei. Symptoms induced by these nematodes usually are not very impressive, but 50% yield loss of chickpea may occur. Among root-knot nematodes, Meloidogyne artiellia is associated with severe yield losses of chickpea in Italy, Spain and especially Syria. Tolerance limits of 0.14 and 0.02 of this nematode per ml soil are reported for winter and spring-sown chickpea, respectively. Meloidogyne incognita and M. javanica can be noxious to French bean and cowpea in sandy soil. The cyst nematode Heterodera goettingiana reduces yields of pea, broad bean and vetch when its population densities exceed 0.5, 1, and 2.1 eggs per g of soil, respectively. Heterodera ciceri occurs in northern Syria and Turkey and is responsible for economic yield losses of chickpea and lentil in fields infested with more than 1 or 2.5 eggs per g of soil, respectively. Pea and grass pea also suffer from infestation of this nematode. The stem and bulb nematode Ditylenchus dipsaci causes severe decline of broad bean, pea and probably lentil during wet seasons. Other nematodes, although present in moderate numbers, appear to have little importance.  相似文献   

10.
Faba bean necrotic yellows virus (FBNYV) was isolated from naturally infected faba bean plants in Jordan. The identification was based on host range, mode of transmission, symptomatology and serological properties. FBNYV occurred naturally in several leguminous crops including cultivated legumes and wild forage legumes, such as species of Medicago , Trifolium and Lathyrus . and infected other plant species belonging to the Malvaceae, such as Malva parviflora and Hibiscus esculentus . Such hosts may act as important natural reservoirs for both the virus and its aphid vectors. This is the first report of infection of M. parviflora and H. esculentus with FBNYV. The virus was not recovered from samples taken from some cultivated crops, including squash, cucumber, tomato, eggplant and pepper, growing near to faba bean fields. Also, it was not detected in commercial faba bean seeds collected from local companies or in seeds collected from infected faba bean plants. It was transmitted efficiently by Aphis craccivora . Serological testing of 1392 samples from faba beans showing virus-like symptoms and collected randomly from 16 locations (fields) in the Jordan Valley and Jarash areas showed that FBNYV occurred in 54.5% of the samples. These results indicate that FBNYV was an important pathogen of beans during the growing season of 1996 in Jordan.  相似文献   

11.
Chickpea chlorotic dwarf virus (CpCDV; genus Mastrevirus, family Geminiviridae) is one of the most important legume-infecting viruses with a wide host range and geographic distribution in Africa and Asia. In Iran, CpCDV is common in chickpea (Cicer arietinum), but there is limited information about diversity and infections in plants of other legume species. In the current study, a total of 1671 leaf samples from different pulse crops with symptoms were collected in nine provinces of Iran, and the CpCDV infection status was tested by PCR and/or rolling circle amplification (RCA), resulting in the detection of CpCDV in samples of chickpea, lentil (Lens culinaris) and faba bean (Vicia faba) from different regions. Sequence analysis of complete genomes of 18 isolates recovered by digestion of RCA products revealed infection with isolates of the strains CpCDV-A and CpCDV-F in chickpea, lentil and faba bean. Phylogenetic analysis showed that the Iranian isolates of CpCDV were closely related to previously sequenced isolates of CpCDV-A and CpCDV-F. To the authors' knowledge, this is the first report of CpCDV-F in Iran. Using agroinoculation with infectious clones for one isolate each of CpCDV-A and CpCDV-F, infectivity was confirmed in both faba bean and chickpea, with plants developing leaf curling and/or yellowing. Both infectious clones also successfully infected Nicotiana benthamiana resulting in mild yellowing and intensive leaf curling for CpCDV-A, and dark-green mosaic, dwarfing and mild leaf curling for CpCDV-F.  相似文献   

12.
A new strain of broad bean mottle virus, isolated from faba bean (Vicia faba L.) in the Sudan, is described. It differs considerably from known isolates by its nearly symptomless infection of faba bean in spite of high concentrations of the virus in infected plants. It does not differ from regular isolates in gel-diffusion serology, light and electron microscopy, host range and symptoms in major hosts other than faba bean. It may constitute a potential threat to other food legumes in the region.  相似文献   

13.
Chickpea was surveyed for viruses in the main growing areas of the crop in Morocco. A total of 36 fields was examined and 167 samples with symptoms suggestive of virus infection were collected. Serological testing using polyclonal antisera and monoclonal antibodies revealed the presence of the following viruses: alfalfa mosaic alfamovirus (AMV), broad bean mottle bromovirus (BBMV), broad bean stain comovirus (BBSV), bean yellow mosaic potyvirus, cucumber mosaic cucumovirus (CMV), faba bean necrotic yellows nanavirus (FBNYV), lettuce mosaic potyvirus, pea seed-borne mosaic potyvirus (PSbMV), and luteoviruses. Field symptoms of these viruses in chickpea comprised mosaics, yellowing, stunting, narrowing of leaflets and bushy growth. AMV, luteoviruses and potyviruses were found spread over the chickpea-growing regions, while BBSV, BBMV, and FBNYV were confined to some areas. Virus incidence per field varied from 1 to 40% for luteoviruses and from 1 to 20% for mosaic-inducing viruses. AMV, luteoviruses, potyviruses and CMV were detected in 89, 83, 75 and 42%, respectively, of the surveyed fields. BBMV, BBSV and FBNYV were less widespread at the national level. This is the first report of the occurrence of viruses other than CMV and BBMV in chickpea in Morocco, and the first record of the natural occurrence of BBSV and PSbMV in chickpea.  相似文献   

14.
Molecular diagnostic techniques have been developed to differentiate the Ascochyta pathogens that infect cool season food and feed legumes, as well as to improve the sensitivity of detecting latent infection in plant tissues. A seed sampling technique was developed to detect a 1% level of infection by Ascochyta rabiei in commercial chickpea seed. The Ascochyta pathogens were shown to be genetically diverse in countries where the pathogen and host have coexisted for a long time. However, where the pathogen was recently introduced, such as A. rabiei to Australia, the level of diversity remained relatively low, even as the pathogen spread to all chickpea-growing areas. Pathogenic variability of A. rabiei and Ascochyta pinodes pathogens in chickpea and field pea respectively, appears to be quantitative, where measures of disease severity were based on aggressiveness (quantitative level of infection) rather than on true qualitative virulence. In contrast, qualitative differences in pathogenicity in lentil and faba bean genotypes indicated the existence of pathotypes of Ascochyta lentis and Ascochyta fabae. Therefore, reports of pathotype discrimination based on quantitative differences in pathogenicity in a set of specific genotypes is questionable for several of the ascochyta-legume pathosystems such as A. rabiei and A. pinodes. This is not surprising since host resistance to these pathogens has been reported to be mainly quantitative, making it difficult for the pathogen to overcome specific resistance genes and form pathotypes. For robust pathogenicity assessment, there needs to be consistency in selection of differential host genotypes, screening conditions and disease evaluation techniques for each of the Ascochyta sp. in legume-growing countries throughout the world. Nevertheless, knowledge of pathotype diversity and aggressiveness within populations is important in the selection of resistant genotypes.  相似文献   

15.
Severe mosaic with leaf malformation and green vein banding was observed on yam bean in West and Central Java, Indonesia. Virions of the causal virus were flexuous filaments, about 700 nm in length, with a coat protein of 30 kDa. The virus was transmitted by mechanical inoculation and by aphids in a nonpersistent manner. The nucleotide sequence of the coat protein gene had the highest identity with that of Bean common mosaic virus (BCMV, genus Potyvirus) isolate VN/BB2-5. Based on demarcation criteria, including the genome sequence and host range, we tentatively designate this isolate as BCMV-IYbn (Indonesian yam bean). The nucleotide sequence reported is available in the DDBJ/EMBL/GenBank databases under accession number AB289438.  相似文献   

16.
The susceptibility/resistance to Aphanomyces euteiches of various genotypes (cultivars and breeding lines) of several grain legume species was assessed in controlled conditions. A total of 279 genotypes from the major grain legumes grown in temperate climates (faba bean, chickpea, lentil, lupin and common vetch) and three other legumes frequently cultivated in France (French bean, clover and alfalfa) were screened with one pea-infecting isolate from France. Four different categories of susceptibility/resistance were identified among the legume species/cultivars tested with the pea A. euteiches isolate: (1) susceptible legume species (lentil, alfalfa, French bean) among which low levels of partial resistance was observed; (2) legume species including susceptible genotypes and genotypes with high levels of resistance (common vetch, faba bean and clover), (3) species with a very high level of resistance (chickpea) and (4) species displaying no symptoms (lupin). It is therefore important to consider pathogen-species and pathogen-genotype interactions when defining the host specificity of A. euteiches and considering the possible role of different legume species in increasing or decreasing the soil inoculum potential.  相似文献   

17.
We identified Broad bean wilt virus 2 (BBWV-2) in yams based on particle morphology, test plant symptoms, protein features, aphid transmission, and molecular classification using nucleotide sequences of coat protein genes.  相似文献   

18.
Five Pythium species (Pythium irregulare, P. mamillatum, P. myriotylum, P. spinosum and P. ultimum var. ultimum) were isolated from the hypocotyls and roots of kidney bean plants with damping-off from a commercial field and from experimental plots that have undergone either continuous cropping with kidney bean or rotational cropping with arable crops. In inoculation tests, all five Pythium species were pathogenic to kidney bean. This is the first report of damping-off of kidney bean caused by Pythium species; we named this disease damping-off of kidney bean. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB291811, AB291944 and AB291945.  相似文献   

19.
Zoospores of 12 isolatesO. bornovanus from geographically diverse sites and representing the three host specific cucurbit strains were tested as vectors for seven viruses using watermelon bait plants and the in vitro acquisition method. All isolates of the cucumber, melon, and squash strains transmitted melon necrotic spot carmovirus (MNSV) and cucumber necrosis tombusvirus (CNV) but none transmitted petunia asteroid mosaic tombusvirus (PAMV) or tobacco necrosis necrovirus (TNV). The isolates varied as vectors of three other carmoviruses: cucumber leaf spot virus (CLSV); cucumber soil borne virus (CSBV); and squash necrosis virus (SqNV). All cucumber isolates transmitted CLSV and SqNV but not CSBV. Some of the melon isolates transmitted CLSV and SqNV but none transmitted CSBV. Two squash isolates transmitted CSBV and SqNV but not CLSV. Two isolates ofO. brassicae transmitted only TNV and a third did not transmit any of the viruses. The species of bait plant sometimes affected transmission. The most efficient vector strains ofO. bornovanus, as determined by reducing zoospores and virus in the inoculum, were the cucumber strain for CLSV; the cucumber strain for CNV if cucumber was the bait plant or melon strain if watermelon was the bait plant; and the squash strain for SqNV. The plurivorous strain ofO. brassicae was the most efficient vector of TNV.Olpidium bornovanus is the first vector reported for CSBV and is confirmed as a vector of SqNV. It is proposed that all carmoviruses may have fungal vectors.Ligniera sp. did not transmit any of the viruses in one attempt.Abbreviations CLSV cucumber leaf spot virus - CNV cucumber necrosis virus - CSBV cucumber soil borne virus - MNSV melon necrotic spot virus - PAMV petunia asteroid mosaic virus - SqNV squash necrosis virus - TNV tobacco necrosis virus - TBSV tomato bushy stunt virus  相似文献   

20.
Uromyces viciae-fabae, rust of faba bean, parasitizes other legume crops such as lentils (Lens culinaris) and field peas (Pisum sativum) in some environments. In this study we examined the host range of two Australian isolates of U. viciae-fabae collected and purified from a faba bean crop and classified as U. viciae-fabae ex V. faba. Field pea (P. sativum), chickpea (Cicer arientinum), lupin (Lupinus spp.), lentil (L. culinaris), and mung bean (Vigna radiata) genotypes were tested with these isolates, as well as resistant and susceptible genotypes of the faba bean host. Race specificity for these two pathogen isolates was observed on Vicia faba, with two faba bean genotypes showing partial resistance. Both U. viciae-fabae isolates also colonized field pea seedlings and successfully produced uredinia under glasshouse conditions, despite this fungus not being known as a pathogen of Australian field pea crops. No sporulation of either isolate of U. viciae-fabae ex V. faba was observed on any of the remaining legume species tested. However, obvious differences in fungal growth were observed, ranging from small infection sites with very rare haustorium formation in mung bean to more extensive growth and the development of potential uredinial structures in chickpea. These observations are discussed in relation to the phylogenetic relationship of these host and nonhost species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号