首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
以竹屑废弃生物质为原料,磷酸和硫酸混合液为催化剂,低温制备竹屑活性炭。采用正交实验法研究了在低温二氧化碳活化条件下制备活性炭的优化工艺条件。结果表明,以磷酸和硫酸混合液为催化剂低温制备竹屑活性炭的优化条件为:硫酸和磷酸质量分数为20%和40%,炭化温度200℃,炭化时间2h,活化温度500℃,活化时间3h。本次试验制备的竹屑活性炭的吸附碘值为597mg/g,得率为66%。  相似文献   

2.
黄钰坪  王登辉 《煤炭学报》2023,(6):2388-2396
生物炭作为一种新兴的碳质吸附剂,具有良好的VOCs控制功能。以玉米芯为原料,制备了一系列生物炭(BCx)和碳酸钾活化生物炭(KBC-x-y)(其中,x为炭化温度,y为活化温度)用于吸附苯。利用热重分析、氮气吸附-脱附、扫描电镜(SEM)以及元素分析(EA)等方法获得了生物炭(质)样品的热解特性、比表面积、孔容孔径、表面形态及原子占比等,通过吸附实验考察炭化温度/活化温度对生物炭吸附苯的影响。结果表明:碳酸钾活化后的生物炭比表面积最高可达576.76 m2/g,孔容积为0.325 m3/g,对苯的最大吸附量达到82.51 mg/g(较未活化生物炭提升2.9倍);炭化温度与吸附能力呈现正态分布的趋势,吸附能力随着炭化温度的升高而增强,但过高的炭化温度(> 800℃)会导致气孔堵塞、数量减少,比表面积降低,吸附能力下降;低温/高温炭化下,生物炭吸附能力随活化温度变化呈现出相同趋势;高温炭化后(800℃),最佳活化温度为400℃(KBC-800-400),活化温度太高会导致微孔孔壁破碎以及挥发物的烧结效应,从而降低吸附能力,较低的活化温度未能使...  相似文献   

3.
实验选取七台河焦煤和长焰煤为原料,制备出较高质量的煤基活性炭。结果表明:炭化到600℃并恒温45min,再于850℃下活化,可以制备出具有较高比表面积和较高碘吸附值的活性炭。  相似文献   

4.
研究了反应压力对太西无烟煤制备活性炭的炭化和活化过程的影响.反应压力能够改变炭化产物和活化产物的吸附性能和孔径分布.加压炭化影响了热解产物的传质过程,提高了发生二次反应的机会,而加压活化能够影响活化反应的吸附平衡和反应速率.随着反应压力的提高,活性炭产品的堆比重降低,碘和亚甲蓝吸附值提高,比表面积和孔容提高,形成更多的微孔结构.  相似文献   

5.
《煤炭技术》2015,(9):305-308
采用新型复配黏结剂制备柱状活性炭,研究原料配比和工艺参数对活性炭性能及孔径分布的影响。结果表明:原料配比中太西无烟煤有利于微孔发育,煤化程度较低的永城贫煤则有利于中孔发育;活性炭的强度随着烧失率的增大不断下降,碘值、亚甲基蓝值则呈现先升高后下降的趋势;最佳制备工艺为炭化温度600℃、炭化恒温时间0,活化温度890℃、活化时间260 min,制备出的活性炭强度、碘值、亚甲基蓝值和比表面积分别为92.2%、1 052 mg/g、303 mg/g和1 084 m2/g。  相似文献   

6.
选用5种原料煤,3种添加剂分别考察煤结构特性和添加剂种类对制备活性炭性能的影响,以比表面积、孔径分布、CO_2吸附量、碘值、微晶结构尺寸对活性炭进行表征。结果表明:由于5种原料煤结构特性的不同,经炭化之后微晶高度和层片宽度都有不同程度的变化。太西煤炭化料的微晶结构在后期活化阶段最为适宜,从而以灰分低、挥发分适中的太西无烟煤为原料,制备的活性炭微孔最为发达,吸附CO_2的性能最佳;3种添加剂中NH_4Cl+KNO_3效果最为显著,制备的活性炭比表面积为1093 m~2/g,微孔孔容为0.415 m L/g,CO_2的吸附量为2.41 mmol/g(0.1 MPa,25℃)。  相似文献   

7.
以竹屑为原料,经磷酸和硫酸混合溶液预处理,在低温下制备竹屑活性炭。采用正交实验法探讨了在低温条件下制备活性炭的优化工艺条件。结果表明,以磷酸和硫酸混合溶液为预处理剂,低温制备竹屑活性炭的优化工艺条件为:硫酸和磷酸质量分数为20%和40%,炭化温度200℃,炭化时间2h,活化温度500℃,活化时间3 h。本次试验制备的竹屑活性炭的吸附碘值为597 mg/g,活性炭产率为56%。还通过SEM表征制备的活性炭具有孔洞结构,孔径约为0.1μm,通过热重试验探讨了磷酸和硫酸混酸处理对竹屑热解特性的影响。结果表明,经混酸处理后,竹屑热解特性降低,固体产物产率升高,进而说明有利于活性炭产率的提高。  相似文献   

8.
为解决变压吸附法提纯煤层气中甲烷遇到的吸附剂难题,以我国海南产椰壳炭化料为原料,采用二次炭化-水蒸气物理活化工艺制备生物质基活性炭,采用高压电子天平测量了298 K、0~1. 0 MPa下CH_4/N_2在制备得椰壳活性炭上的吸附等温线,利用比表面积和孔径吸附仪测量了活性炭的孔径结构,详细研究了活化工艺参数对CH_4/N_2吸附分离性能及孔隙结构的影响。通过变压吸附装置检验了最佳工艺参数条件下制备椰壳活性炭的CH_4提浓效果。研究结果表明,随着活化温度的提高,平衡分离系数逐步减小,吸附容量逐步增加,最佳活化温度为850℃;平衡分离系数和饱和吸附容量均随水蒸气流量的增加呈先增加后减小的趋势,最佳水蒸气流量为2.0 kg/h;平衡分离系数随活化时间延长先增加后减小,甲烷饱和吸附容量逐渐递增,最佳活化时间为40 min。升高活化温度对孔结构的发育影响显著,比表面积、微孔孔容和总孔容均呈递增趋势,表明升高温度有利于微孔的发育,可制备出微孔发达的活性炭。变压吸附评价结果表明在水蒸汽活化工艺最优条件下制备得椰壳活性炭可将20%CH_4-80%N_2模拟煤层气中的CH_4体积分数提高到48. 3%,提浓幅度大于25%,回收率为80.58%,产能达到108.82 m~3/(t·h);同时,该吸附剂对中高浓度煤层气也具有较好的分离效果,体现出较好的分离性能。  相似文献   

9.
以高温热解煤化工生产线产生的焦粉为原料,采用物理化学活化法、炭化活化一体化工艺技术,在氮气气氛的回转炉中进行高温炭化活化,制备出强度为94%,比表面积为1016 m2/g的煤质柱状活性炭。利用全自动比表面积及孔隙度分析仪分析了活性炭的氮气吸脱附曲线及孔结构特性。经检测,该活性炭孔容为0.51m L/g,碘吸附值为907 mg/g。同时比较了其炭化料和活化料在微观表面形貌中的特点,结果显示活化料中的孔洞类型和结构明显比炭化料中的丰富。在XRD测试分析中,活性炭中的晶态碳原子相比原料和炭化料逐渐呈现出非晶态转变。傅里叶变换红外光谱分析结果显示,活性炭中主要含有-OH、C-O-C和苯环等官能团,相较原料,其他官能团在活化时都转化成了CO_2、H_2O等小分子物质。  相似文献   

10.
以神华褐煤为原料,ZnCl_2为活化剂,采用化学活化法制备煤基活性炭,并通过NaOH溶液改性调控活性炭表面的化学官能团,进行烟气中SO_2吸附的研究。利用扫描电镜观察活性炭的表观形貌,利用低温N_2吸附法表征活性炭的比表面积及孔隙结构,利用红外光谱和Boehm滴定法考察活性炭的表面化学官能团。基于响应曲面法(RSM),对煤基活性炭的制备工艺参数进行了详细探究,建立了炭化温度、炭化时间、升温速率对活性炭比表面积的预测模型。通过响应曲面法得到/min,炭化时间3 h。得g。考察NaOH溶液浓度对煤基活性炭的孔隙结构、表面化学官能团及SO_2吸附量的影响机制。结果表明,NaOH改性后活性炭的表面更加凹凸不平,孔结构被剧烈破坏,活性炭的孔径主要分布在0. 5~0. 6,0. 7~0. 9和1. 0~4. 0 nm范围。在20%NaOH浓度改性时,活性炭具有最高的比表面积(681 m~2积(292 m~2比表面积和孔容下降。随着NaOH浓度的增加,活性炭表面的羧基、羟基等酸性基团的含量下降,而羰基等碱性基团的含量则明显增加。30%NaOH浓度处理样品的碱性基团含量最高,可达到g。进一步对活性炭的微孔比表面积、碱性官能团含量与SO_2吸附量的相关性进行分析,发现SO_2吸附量与微孔比表面积和碱性官能团含量都呈现正线性相关关系,且碱性官能团含量的相关性高于微孔比表面积。因此,表面碱性官能团和微孔结构有利于SO_2在活性炭表面的吸附。  相似文献   

11.
将粉煤灰、硅藻土复合焙烧改性后制得吸附剂——粉煤灰-硅藻土复合材料,并将其应用于吸附选矿废水中的Cr(Ⅵ),考察了溶液Cr(Ⅵ)初始浓度、pH值、吸附剂投加量、吸附温度、吸附时间等参数对吸附剂吸附Cr(Ⅵ)效果的影响。结果表明:粉煤灰与硅藻土复合焙烧改性后,材料孔隙增加,比表面积增大; 粉煤灰-硅藻土复合材料对Cr(Ⅵ)的吸附是一个自发的吸热过程,以物理吸附为主。在溶液Cr(Ⅵ)初始浓度10 mg/L、pH=2、粉煤灰-硅藻土复合材料投加量20 g/L、吸附温度60 ℃、吸附时间6 h条件下,500 ℃焙烧2 h制得的粉煤灰-硅藻土复合材料对废水中Cr(Ⅵ)去除率可达70.6%。  相似文献   

12.
吴凡  叶传珍  王敏辉 《煤炭工程》2020,52(12):163-167
以高惰质组准东不粘煤为原料制备活性炭,基于Box-Behnken响应曲面法,采用水蒸气活化制备了煤基活性炭,并测定了其碘吸附量,使用扫描电镜(SEM)观察了活性炭表面形貌,通过低温氮气吸附法得到了活性炭比表面积、总孔体积和孔径分布等物理结构特征。结果表明,最佳活化水平为活化温度900℃,活化时间90min,水蒸气流量6mL/min。活化时间、活化温度和水蒸气流量对碘吸附量均有影响,其中活化时间影响程度最大,活化温度次之,水蒸气流量最小,且因素之间交互作用不显著。比表面积、总孔体积和微孔数量均会影响碘吸附量,其中微孔数量起主要作用。  相似文献   

13.
为探究赤铁矿渣和煤泥的高附加值利用途径,通过高温还原法制备铁碳基复合材料并将其用于 Cr( Ⅵ ) 的吸附研究,利用 SEM-EDS、XRD 及 XPS 进行吸附机理研究。 结果表明,所制材料主要含 Fe、C、S 3 种元素,其摩尔比 为 24 ∶62 ∶14。 Fe、C 元素构成铁碳基复合材料的基本结构,FeO、FeS 和 Al2O3·SiO2 不均匀地镶嵌在复合材料的结构 中。 这种材料对水中 Cr(Ⅵ)具有较好的去除性能。 在 Cr(Ⅵ )初始浓度 100 mg / L、初始 pH = 2 的溶液中,投加 3 g / L 铁碳基复合材料,25 ℃振荡反应 60 min,水中 Cr(Ⅵ )的去除率可达 99. 87%,材料的最大吸附量可达 86. 88 mg / g。 水 中 Cr(Ⅵ)的去除,是因为 Cr(Ⅵ)能与铁碳基材料表面的 Fe 发生还原反应生成 Fe2+和 Cr( Ⅲ ),再进一步与材料表面 OH-、S2-结合生成稳定的 FeCr2O4 和 FeCr2S4,沉积在铁碳基材料表面。 以上研究为赤铁矿渣和煤泥制备铁碳基复合 材料及其应用提供了理论和技术指导。  相似文献   

14.
利用夏威夷壳和草酸钾制备改性夏威夷壳炭,采用SEM分析、SAP测定、FTIR及Raman光谱分析表征产物微观结构、孔结构、官能团及石墨化程度,通过吸附试验、动力学模拟及吸附等温线拟合,探究改性前后夏威夷壳炭对Cr(Ⅵ)的吸附规律。结果表明:(1)改性前夏威夷壳炭的表面孔隙结构相对较少、整体光滑;改性后夏威夷壳炭表面明显崎岖不平,粗糙度、孔隙增加。改性大幅提高了夏威夷壳炭的比表面积和孔容,降低了孔径,有利于提高夏威夷壳炭吸附性能。(2)改性前后夏威夷壳炭的结构仍保持相对完整,改性后夏威夷壳炭的峰强度比I_D/I_G增大,石墨化程度降低。(3)改性夏威夷壳炭对Cr(Ⅵ)的吸附率始终高于未改性夏威夷炭的;酸性条件有利于Cr(Ⅵ)的去除;Cr(Ⅵ)的吸附率随吸附剂用量和吸附时间的增加而升高,之后达到饱和;Cr(Ⅵ)的吸附率随溶液初始Cr(Ⅵ)浓度的增加而逐渐降低。(4)吸附动力学用准二级动力学模型描述和预测,夏威夷炭对Cr(Ⅵ)的等温吸附过程符合Langmuir方程,静电吸引和Cr(Ⅵ)的还原络合为主要吸附机制。  相似文献   

15.
废筷子采用磷酸活化法在不同操作条件下制备得到各种活性炭。分别研究了磷酸活化法制备活性炭的主要操作参数,如浸渍比、磷酸浓度、活化温度和活化时间对活性炭收率和活性炭对碘的吸附值的影响。实验结果表明,在最佳工艺条件:磷酸浓度70%,浸渍比2.5:1,活化温度500℃,活化时间60min下,所制得活性炭的碘吸附值为885.23mg/g。另外,实验测定了废筷子采用磷酸活化法制备的活性炭对硫醇的吸附性能。结果发现活性炭的碘吸附值越高对硫醇的吸附效果越好。  相似文献   

16.
近年来矿井水中氟离子含量超标问题尤为突出,不仅影响矿井水处理后的回用水质,而且危害人体健康。为了同时实现固废资源化利用和矿井水中氟离子的去除,本文以废弃咖啡渣为原料,采用化学活化法制备了一种新型矿井水中氟离子的吸附剂——咖啡渣生物质炭(CRB),通过单因素法优化了制备过程中的活化剂种类、活化温度和活化浓度;通过动力学和等温吸附实验对比分析了优化前后CRB对氟离子的吸附效能;通过表面物化特性表征探究了优化后的CRB(O-CRB)对氟离子的吸附机理。结果表明:当采用氯化锌为活化剂、浓度为4 mol/L、活化温度为400 ℃时,获得了吸附性能最优的O-CRB,其对氟离子的最大吸附量为2.20 mg/g,是活化前CRB的1.30倍;与优化前相比,O-CRB的中孔孔容量与比表面积明显增加,含氧官能基团(-COOH)含量和表面Zeta电位升高,且吸附氟离子后O-CRB表面的氯离子含量明显降低(3.27 % 至0.61 %)、氟离子含量明显增加(0.76 % 至10.34 %),从而可推测出O-CRB吸附氟离子的主要机理为静电吸附和离子交换。  相似文献   

17.
选用5 种原料煤,3 种添加剂分别考察煤结构特性和添加剂种类对制备活性炭性能的影响,以比表面积、孔径分布、CO2 吸附量、碘值、微晶结构尺寸对活性炭进行表征。结果表明:由于5 种原料煤结构特性的不同,经炭化之后微晶高度和层片宽度都有不同程度的变化。太西煤炭化料的微晶结构在后期活化阶段最为适宜,从而以灰分低、挥发分适中的太西无烟煤为原料,制备的活性炭微孔最为发达,吸附CO2 的性能最佳;3 种添加剂中NH4Cl+KNO3 效果最为显著,制备的活性炭比表面积为1 093 m2 / g,微孔孔容为0. 415 mL/ g,CO2 的吸附量为2.41 mmol/ g(0.1 MPa,25 ℃)。  相似文献   

18.
为探究多层流化床用于粉状炭化料活化的可行性,采用多层流化床反应器,以大同煤的炭化料为原料,通过含氧水蒸汽活化法制备活性炭,考察操作条件对活性炭的吸附性能、孔结构特性及产率的影响。结果表明,与单层床和3层床相比,双层床活化满足生产高品质活性炭的需求,且能获得较高的活性炭产率。采用在第2层床供入部分氧气的分级供氧方法可提高活性炭的产率,并维持了较高的吸附能力和比表面积。在双层流化床第1层床和第2层床活化温度分别为890 ℃和870 ℃、活化剂中氧体积分数为8.9%、加料速率5 g/min、水碳比1.73的条件下,当第2层床供氧量占总氧量的体积分数为50%时,活性炭的收率达到46%,比表面积为877.1 m2/g,亚甲基蓝吸附值为226 mg/g,碘吸附值为1 025 mg/g,强度为92%,装填密度为334 kg/m3。因此,在双层流化床中采用分级供氧能确保同时实现煤基活性炭制备的高收率和高品质。  相似文献   

19.
在磁性膨润土(MB)表面接枝聚乙烯亚胺(PEI)制备改性磁性膨润土(PEI/MB),利用傅里叶红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱仪(EDS)和振动样品磁强计(VSM)对其进行表征分析,并考察其对Cr(Ⅵ)的吸附性能。结果表明,PEI成功接枝于磁性膨润土表面;pH值对吸附影响较大,最佳pH值为2;PEI/MB对Cr(Ⅵ)的吸附动力学符合准二级动力学模型;吸附等温线更符合Langmuir吸附等温模型,理论最大吸附量可达27.48 mg/g;6次再生后,PEI/MB对Cr(Ⅵ)仍具有一定的吸附性能。试验表明PEI/MB是一种具有良好应用前景的Cr(Ⅵ)吸附剂。  相似文献   

20.
针对兰炭粉末可利用性低及大量堆放带来的污染问题,提出利用兰炭粉末为原料,H3PO4为活化剂,采用化学试剂浸渍预处理,进一步气体活化的方式,单因素法分析不同活化条件对所制得活性炭收率、孔隙结构和碘吸附值的影响。采用ZXF-06/10型自动吸附仪测定所制备活性炭的N2吸附-脱附等温线和孔径分布,确定了H3PO4活化法制备活性炭的最佳工艺条件。试验结果表明:浸渍比和活化温度分别对活性炭的碘吸附值及收率影响显著,当浸渍比为5∶1、H3PO4质量分数40%、活化温度400℃、活化时间40 min时,产品活性炭的碘吸附值最高可达894.13 mg/g,比表面积为926.4 m2/g,总孔容为0.54 m L/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号