首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
为研究不同点火位置下氢气/甲烷/空气预混气体的爆燃特性,改变点火位置IP和氢气添加比例φ,在100mm×100 mm×1000 mm方形透明管道实验平台上开展爆燃实验。实验结果表明:火焰结构向泄爆端和封闭端传播时受点火位置和氢气添加比例的控制,当火焰向泄爆端传播时,郁金香火焰的形成因素由IP主导,当火焰向封闭端传播时,IP及φ共同作用于郁金香火焰的形成;IP和φ对火焰前锋演化的作用模式可以分为3类;当混合气体中φ小于0.25时,氢气添加对火焰传播速度的影响不明显;当φ不超过0.75时,仅当IP位于管道中后部时,超压出现周期性振荡,且点火位置距泄爆端越近,振荡时间越长;当为纯氢爆炸时,不同点火位置下压力振荡消失且到达最大压力峰值的时间基本一致;当φ不同时,最大压力峰值随点火位置的变化规律不同。  相似文献   

2.
郑立刚  苏洋  李刚  王亚磊  朱小超  王燕  余明高 《化工学报》2017,68(12):4874-4881
为研究不同点火位置下氢气/甲烷/空气预混气体的爆燃特性,改变点火位置IP和氢气添加比例φ,在100 mm×100 mm×1000 mm方形透明管道实验平台上开展爆燃实验。实验结果表明:火焰结构向泄爆端和封闭端传播时受点火位置和氢气添加比例的控制,当火焰向泄爆端传播时,郁金香火焰的形成因素由IP主导,当火焰向封闭端传播时,IP及φ共同作用于郁金香火焰的形成;IP和φ对火焰前锋演化的作用模式可以分为3类;当混合气体中φ小于0.25时,氢气添加对火焰传播速度的影响不明显;当φ不超过0.75时,仅当IP位于管道中后部时,超压出现周期性振荡,且点火位置距泄爆端越近,振荡时间越长;当为纯氢爆炸时,不同点火位置下压力振荡消失且到达最大压力峰值的时间基本一致;当φ不同时,最大压力峰值随点火位置的变化规律不同。  相似文献   

3.
采用CFD软件AutoReaGas建立典型的物理模型及数值模型来模拟室内可燃气体泄漏后与空气预混爆炸场的特性。结果表明,点火位置、泄爆压力的改变会对爆炸场内的超温、超压产生巨大影响。泄爆压力越大,产生的超压就越大,而其对温度无明显影响;测点温度对点火位置的改变反应灵敏,同一测点,不同点火位置,距离越近,测点的最大超压越大。这项研究为室内可燃气体爆炸特性及规律的进一步研究提供了理论依据,对于有效预防和控制事故的发生,降低事故中的人员伤亡和减少财产损失具有重要的指导意义。  相似文献   

4.
针对自燃点火与电火花点火对欠膨胀氢气射流燃爆超压的变化规律开展实验研究,测量了自燃和电火花两种点火方式在不同释放压力下的爆炸超压与火焰传播速率,分析了初始压力和点火条件对爆炸超压的影响机制。实验结果表明:相同释放条件下,自燃点火比电火花点火引发的管外爆炸超压峰值更高,压力上升速率更快,且自燃点火的发展过程更稳定;随着缓冲罐内释放压力从6 MPa升高到9 MPa,自燃管外爆炸超压峰值先升高后降低,在释放压力为8 MPa时自燃引发的爆炸超压达到最大值15.97 kPa,而电火花点火源处的燃爆超压随释放压力的上升从7.23 kPa先降低至3.17 kPa后升高到4.19 kPa;电火花点火火焰在点火源处形成了不规则形状点火核,同时火焰传播速度大于自燃火焰发展速度。本研究对于加氢站设计和燃爆风险评估具有参考意义。  相似文献   

5.
为研究泄爆口处破膜压力对管道内可燃气体燃爆特性的影响,基于大涡模拟(LES)和Zimont燃烧模型,在泄爆口不同破膜压力条件下(0.1MPa、0.3MPa、0.5MPa、0.7MPa),对预混H2/空气燃爆过程开展三维数值模拟。结果表明:在大长径比管道内,由于管壁作用、声波震荡作用及火焰的不稳定性,各工况条件下火焰传播速度曲线存在3个波峰、2个波谷;除破膜压力为0.1MPa工况外,泄爆口开启产生减速效应,使各工况条件下的火焰传播速度相比于密闭管道均下降;各工况的管内压力在泄爆口开启后整体呈下降趋势,且泄爆口的破膜压力越小,管内压力峰值越小;对比密闭管道,各工况的压力上升速率均有不同程度的降低,爆炸强度减弱,破膜压力为0.3MPa时,压力上升速率的下降幅度最大,泄爆效果最好。  相似文献   

6.
点火源位置对甲烷-空气爆燃超压特征的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
开展了化学恰当比φ = 1甲烷-空气预混气在透明方形管道内的爆燃实验研究,改变点火源位置,分析在管道一端闭口一端开口条件下,点火源位置对甲烷-空气预混气爆燃超压特征的影响。实验结果表明:当点火源与闭口端之间距离较小时,时间-超压曲线不发生振荡,随着点火源相对于闭口端距离的增加,超压分别呈微弱等幅振荡、振幅指数增长的振荡,且最大超压峰值随之增加;超压波形与火焰瞬态结构存在密切关联,振荡波形超压峰值的极值点总是位于火焰位置的极值点;当超压发生振荡时,振幅指数增长阶段的振荡周期随时间线性减小,振荡周期与未燃气气柱长度呈现较好相关性;超压振荡的原因在于,泄爆口侧的火焰前沿触发了超压振荡,闭口侧火焰前沿与声波(压力波)在未燃气气柱中相互作用放大了超压振荡。  相似文献   

7.
浓度和点火位置对氢气-空气预混气爆燃特性影响   总被引:1,自引:0,他引:1       下载免费PDF全文
开展了氢气-空气预混气在透明方管内的爆燃实验研究,分析在一端开口一端封闭的狭长空间内,浓度和点火位置对氢气-空气预混气爆燃特性的影响。实验结果表明:氢气浓度和点火位置对火焰锋面结构以及发展有重要影响;各当量比条件下,均在距封闭端100 mm位置点火时反应最为迅速;在极贫燃或极富燃条件下,点火位置对火焰发展影响更大。氢气浓度与点火位置共同作用于压力波形,以距封闭端300 mm点火位置为界,分别在管道前后两段点火时,不同当量比条件下超压波形呈现复杂变化。超压峰值对氢气浓度具有极强依赖性,并且浓度对爆燃超压的影响程度远大于点火位置;在各点火位置下,均在Φ = 1.25时获得最大超压;最大超压对应的点火位置取决于当量比。  相似文献   

8.
开展了氢气-空气预混气在透明方管内的爆燃实验研究,分析在一端开口一端封闭的狭长空间内,浓度和点火位置对氢气-空气预混气爆燃特性的影响。实验结果表明:氢气浓度和点火位置对火焰锋面结构以及发展有重要影响;各当量比条件下,均在距封闭端100 mm位置点火时反应最为迅速;在极贫燃或极富燃条件下,点火位置对火焰发展影响更大。氢气浓度与点火位置共同作用于压力波形,以距封闭端300 mm点火位置为界,分别在管道前后两段点火时,不同当量比条件下超压波形呈现复杂变化。超压峰值对氢气浓度具有极强依赖性,并且浓度对爆燃超压的影响程度远大于点火位置;在各点火位置下,均在Φ=1.25时获得最大超压;最大超压对应的点火位置取决于当量比。  相似文献   

9.
为得到高开启压力条件下粉尘泄爆过程中火焰传播特性,采用20L球形爆炸装置,在开启压力为(0.78~2.1)×105Pa的条件下对粉尘浓度为400~900g/m3的玉米粉尘开展爆炸泄放试验研究。结果表明:火焰泄放过程分为点火与破膜、欠膨胀射流火焰、湍流射流火焰、湍流燃烧火焰、火焰回燃5个阶段,最大火焰宽度出现在火焰泄放过程的第2阶段,最大火焰长度出现在火焰泄放过程的第3阶段;不同开启压力下,泄爆火焰长度和火焰传播速度随时间先增大后减小;泄放火焰最大宽度变化范围为0.146~0.269m,泄放火焰的最大长度变化范围为0.41~0.666m。通过预测计算得出泄放火焰可能出现的最大范围为Smax1=0.179m2,采用MATLAB软件定量计算求得的泄放火焰可能出现的最大范围的横截面积为Smax2=0.122m2,定量计算得到的Smax2达到预测值Smax1的68%。  相似文献   

10.
利用体积为2 L的亚克力材质容器搭建了小尺度可燃气体泄爆实验系统,基于小尺度实验开展了不同泄爆面积条件下的石油燃料蒸气-空气预混气体泄爆过程研究,获得了典型开口率条件下的内外场超压随时间的动态变化特征,分析了开口率对超压及火焰参数的影响,并对泄爆模式进行了分类。研究结果显示:(1)在不同泄爆系数条件下,石油燃料蒸气-空气预混气体的泄爆模式包括泄爆失败诱导的封闭燃烧、泄爆成功诱导的射流燃烧、泄爆成功诱导的外部爆炸,三种泄爆模式的内外场超压-时间动态曲线、超压峰值、火焰传播速度、火焰传播距离均具有显著差异,且小尺度实验与中尺度实验中均出现破膜超压峰值、火焰射流超压峰值、外部爆炸超压峰值Δp1、Δp2、Δp3;(2)当泄爆系数Kv≤39.68时,内场最大超压峰值、外场轴向最大超压峰值、最大火焰传播速度、轴向火焰传播距离均随着Kv的增大而增大,径向火焰传播距离随着Kv的增大而减小;(3)当Kv≤4.41时,外场轴向和径向最大超压峰值分别由外部爆炸引起(Δp3(ver)和Δp3(hor)),当7.94≤Kv≤39.68时,外场轴向和径向最大超压分别由火焰射流冲击和泄爆膜破裂引起(Δp2(ver)和Δp1(hor));(4)泄爆成功和泄爆失败的临界泄爆系数在Kv=39.68和Kv=158.74之间,发生外部爆炸和射流燃烧的临界泄爆系数在Kv=4.41和Kv=7.94之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号