首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
超精密切削单晶硅的刀具磨损机理   总被引:2,自引:0,他引:2  
为了研究超精密切削单晶硅过程中金刚石刀具后刀面发生急剧磨损的机理,对单晶硅(111)晶面进行了超精密切削实验,并采用X射线光电子能谱分析仪对单晶硅已切削表面进行化学成分分析.实验结果表明:切削区域的高温高压导致金刚石刀具发生碳原子扩散磨损;切削过程中有碳化硅和类金刚石两种超硬微颗粒形成,而随着切削路程长度的逐渐增加,超硬微颗粒并不随之消失;碳化硅和类金刚石超硬微颗粒在金刚石刀具后刀面刻画和耕犁,从而产生沟槽磨损,直接导致金刚石刀具产生急剧磨损.  相似文献   

2.
涂层硬质合金刀具对奥氏体不锈钢的切削特性   总被引:1,自引:0,他引:1  
为了深入探究涂层硬质合金刀具切削奥氏体不锈钢的切削机理,试验采用确定的进给量和背吃刀量,只改变切削速度的单因素法,来研究切削速度对奥氏体不锈钢工件加工表面质量的影响以及涂层刀具的切削机理。采用JEOL JSM-6360LV扫描电子显微镜和EDS能谱仪对工件加工表面及磨损刀片进行表面微区磨损形貌的观察分析与组成成分分析,采用X射线衍射仪对工件表面物相组成进行分析,采用激光扫描显微镜LSM对工件表面三维形貌进行观察分析。研究表明,切削速度较低时,不锈钢材料因材质较软,断屑性能较差;速度较高时,切削过程中粘着现象严重,致使摩擦剪应力较大,摩擦表面发生形变,进而诱发不锈钢的马氏体相变。因此,宜选用中速V=85m/min进行切削,在此速度下,被加工件获得的表面质量较好,表面粗糙度Ra=3.679μm。刀具磨损主要发生在前刀面靠近刀尖的部位,磨损机理主要表现为粘着磨损。研究发现,涂层硬质合金刀具在体现出一定的良好切削性能的同时也不可避免地发生了磨损,所以深入研究其切削机理能够丰富涂层刀具的切削理论,为提高涂层刀具在切削难加工材料时的刀具寿命以及拓展其在实际切削加工中的应用范围提供试验依据。  相似文献   

3.
为研究切削SiC增强铝基复合材料时刀具的磨损形态和机理,采用硬质合金和聚晶金刚石(PCD)刀具进行了各切削工况下的切削试验。用爆炸式快速落刀装置获取切屑根,研究了前刀面的磨损部位。借助扫描电子显微镜(SEM)和原子力显微镜(AFM),检测分析了前、后刀面的磨损形态和成分组成,并进一步研究了磨损机理。结果表明:切削刀具的主要磨损部位发生在后刀面,磨损机理是磨料磨损;前刀面临近刃口区域首先产生由SiC增强相引起的磨料磨损,该区域随后由机械镶嵌生成积屑瘤,积屑瘤脱落后导致产生黏结磨损。黏结磨损的程度较轻,没有形成月牙洼型。前刀面离刃口稍远的区域(积屑瘤尾部后面)会同时产生由切屑底层SiC增强相引起的再次磨料磨损,磨料磨损的主要机理是"微切削"。  相似文献   

4.
李洪  许伟  苏一凡  林松盛  代明江  石倩 《材料导报》2021,35(14):14030-14034
金刚石涂层具有接近天然金刚石的超高硬度及耐磨性,被认为是精密加工石墨模具的理想刀具涂层材料.金刚石涂层与刀具基体间的结合力及涂层表面状态是高速干式切削加工质量及效率的关键,金刚石涂层前处理过程控制及涂层工艺是影响金刚石涂层刀具综合性能的重要因素.本工作基于热丝化学气相沉积技术,采用酸-碱-酸三步法对硬质合金材料进行前处理,在涂层沉积过程中采用大气流量及高炉压沉积工艺在刀具基体表面沉积金刚石涂层.采用扫描电镜(SEM)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线衍射光谱(XRD)对涂层微观结构及物相结构进行分析表征,利用纳米压痕仪对金刚石涂层硬度进行测试,利用喷砂试验测试金刚石涂层的抗冲刷性能,利 用石墨模具切削试验表征金刚石涂层刀具的切削性能.结果表明,金刚石涂层呈典型八面体结构,涂层与基体紧密结合、无明显孔隙,金刚石涂层刀具表面粗糙度为157 nm,sp3键含量大于98%,(涂层硬度大于90 GPa),涂层沿(111)面择优生长,抗冲刷时间大于150 s(0.5 MPa,120目),涂层刀具高速切削石墨模具2 h后,被加工面表面粗糙度小于1 μm,达到进口刀具水平.切削完成后刀具前刀面出现少量崩缺,前刀面磨损是此类刀具加工石墨模具的主要磨损形式.  相似文献   

5.
铝基复合材料中增强粒子的大小对复合材料的切削加工性能影响极大,本文研究了不同颗粒度碳化硅颗粒对铝基复合材料切削加工性能的影响,并分析了不同颗粒度碳化硅增强铝基复合材料所适用的刀具,探讨了刀具对不同大小颗粒碳化硅增强铝基复合材料的切削机理。  相似文献   

6.
铝基复合材料中增强粒子的大小对复合材料的切削加工性能影响极大,本文研究了不同颗粒度碳化硅颗粒对铝基复合材料切削加工性能的影响。并分析了不同颗粒度碳化硅增强铝基复合材料所适用的刀具。探讨了切削刀具对不同大小颗粒碳化硅增强铝基复合材料的切削机理  相似文献   

7.
炭/炭复合材料切削加工试验研究   总被引:2,自引:0,他引:2  
探讨了C/C复合材料结构和机构物理性能的特殊性及机构切削加工的特点。用SEM观察了不同切削条件下切屑的断口形貌。用5种不同的刀具材料、刀具角度及几何开头相同的刀具,在一定的切削工艺参数条件下,对该材料进行切削试验,以刀具有前刀面和/或后刀面的磨损率为判据,最佳刀具材料为YG8,在切削C/C复合材料的过程中,轨具的磨损极为严重,刀具磨损的主要机理是粘着磨损和磨粒磨损。  相似文献   

8.
采用肯纳KYHS10陶瓷刀具对高温合金GH4169进行了高速铣削加工试验,结合Dino显微镜和扫描电镜观察了陶瓷刀具在高速铣削加工后的磨损形貌,并分析了在不同的切削参数下的刀具磨损机理。试验结果表明:陶瓷刀具的磨损形貌主要表现为沟槽磨损、前刀面月牙洼磨损、后刀面磨损、微崩刃和剥落等,主要的磨损机理为黏结磨损、扩散磨损、磨料磨损等,并且在不同的切削参数下磨损机理不同。黏结磨损随切削速度的提高逐渐加剧,磨粒磨损随切削速度的提高而下降。  相似文献   

9.
采用化学气相沉积(chemicalvapordeposition,CVD)厚膜金刚石刀具进行模具钢超声振动切削实验.首先阐述刀具的材质特点,观测其刀尖微观形貌和切削刃截面轮廓.然后搭建了适应精密/超精密加工需求的超声振动切削实验装置,其中激振机构可稳定实现频率42.0kHz、振幅峰峰值8~9μm的振动输出.通过切削无氧铜实验证明该超声振动切削装置工作有效、稳定后,选用AISI420模具钢进行切削实验,研究切削工艺条件及切削用量对加工质量的影响,得到适用于CVD厚膜金刚石刀具的切削用量选取范围,对比研究发现超声振动切削在提升加工表面质量、减少金刚石刀具磨损方面均优于常规切削.本研究可使切削模具钢时的金刚石刀具磨损VBmax由500~600μm减少至40μm,模具铜表面粗糙度Ra由0.93μm改善至0.09μm.本研究为金刚石刀具超声振动切削模具钢的实用化积累工艺经验,并探索提供可行的技术实现途径.  相似文献   

10.
《中国粉体工业》2007,(4):49-50
聚晶金刚石(PCD)具有接近天然金刚石的硬度、耐磨性以及与硬质合金相当的抗冲击性,是一种被广泛应用于有色金属和非金属材料精密加工的新型刀具材料。为充分发挥PCD刀具的优良性能,提高加工零件的表面质量,刀具前刀面(PCD表面)需加工成镜面。目前,PCD镜面通常采用树脂基金刚石砂轮进行研磨加工,但由于PCD与所用的金刚石磨料硬度、性质相近,因而与传统的研磨加工有着很大的不同,  相似文献   

11.
The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine, owing to hard ceramic particles in the matrix. In the milling process, the polycrystalline diamond (PCD) tools are used for machining these materials instead of carbide cutting tools, which significantly increase the machining cost. In this study, ultrasonic vibration method was applied for milling in-situ TiB2/7050Al metal matrix composites using a TiAlN coated carbide end milling tool. To completely understand the tool wear mechanism in ultrasonic-vibration assisted milling (UAM), the relative motion of the cutting tool and interaction of workpiecetool-chip contact interface was analyzed in detail. Additionally, a comparative experimental study with and without ultrasonic vibration was carried out to investigate the influences of ultrasonic vibration and cutting parameters on the cutting force, tool life and tool wear mechanism. The results show that the motion of the cutting tool relative to the chip changes periodically in the helical direction and the separation of tool and chip occurs in the transverse direction in one vibration period, in ultrasonic vibration assisted cutting. Large instantaneous acceleration can be obtained in axial ultrasonic vibration milling. The cutting force in axial direction is significantly reduced by 42%-57%, 40%-57% and 44%-54%, at different cutting speeds, feed rates and cutting depths, respectively, compared with that in conventional milling. Additionally, the tool life is prolonged approximately 2-5 times when the ultrasonic vibration method is applied. The tool wear pattern microcracks are only found in UAM. These might be of great importance for future research in order to understand the cutting mechanisms in UAM of in-situ TiB2/7050Al metal matrix composites.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00294-2  相似文献   

12.
The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 µm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.  相似文献   

13.
ABSTRACT

Hybrid Metal Matrix Composites (MMCs) are a new class of composites, formed by a combination of the metal matrix and more than one type of reinforcement having different properties. Machining of MMCs is a difficult task because of its heterogeneity and abrasive nature of reinforcement, which results in excessive tool wear and inferior surface finish. This paper investigates experimentally the addition of graphite (Gr) on cutting force, surface roughness and tool wear while milling Al/15Al2O3 and Al/15Al2O3/5Gr composites at different cutting conditions using tungsten carbide (WC) and polycrystalline diamond (PCD) insert. The result reveals that feed has a major contribution on cutting force and tool wear, whereas the machined surface roughness was found to be more sensitive to speed for both composite materials. The incorporation of graphite reduces the coefficient of friction between the tool–workpiece interfaces, thereby reducing the cutting force and tool wear for hybrid composites. The surface morphology and worn tool are analyzed using scanning electron microscope (SEM). The surface damage due to machining extends up to 200 µm for Al/15Al2O3/5Gr composites, which is beyond 250 µm for Al/15Al2O3 composites.  相似文献   

14.
Tungsten carbide is a material that is very difficult to cut, mainly owing to its extreme wear resistance. Its high value of yield strength, accompanied by extreme brittleness, renders its machinability extremely poor, with most tools failing. Even when cutting with tool materials of the highest quality, its mode of cutting is mainly brittle and marred by material cracking. The ductile mode of cutting is possible only at micro levels of depth of cut and feed rate. This study aims to investigate the possibility of milling the carbide material at a meso-scale using polycrystalline diamond (PCD) end mills. A series of end milling experiments were performed to study the effects of cutting speed, feed per tooth, and axial depth of cut on performance measures such as cutting forces, surface roughness, and tool wear. To characterize the wear of PCD tools, a new approach to measuring the level of damage sustained by the faces of the cutter's teeth is presented. Analyses of the experimental data show that the effects of all the cutting parameters on the three performance measures are significant. The major damage mode of the PCD end mills is found to be the intermittent micro-chipping. The progress of tool damage saw a long, stable, and steady period sandwiched between two short, abrupt, and intermittent periods. Cutting forces and surface roughness are found to rise with increments in the three cutting parameters, although the latter shows signs of reduction during the initial increase in cutting speed only. The results of this study find that an acceptable surface quality (average roughness Ra<0.2 μm) and tool life (cutting length L>600 mm) can be obtained under the conditions of the given cutting parameters. It indicates that milling with PCD tools at a meso-scale is a suitable machining method for tungsten carbides.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00298-y  相似文献   

15.
Short tool life and rapid tool wear in micromachining of hard-to-machine materials remain a barrier to the process being economically viable. In this study, standard procedures and conditions set by the ISO for tool life testing in milling were used to analyze the wear of tungsten carbide micro-end-milling tools through slot milling conducted on titanium alloy Ti-6 Al-4 V. Tool wear was characterized by flank wear rate,cutting-edge radius change, and tool volumetric change. The effect of machining parameters, such as cutting speed and feedrate, on tool wear was investigated with reference to surface roughness and geometric accuracy of the finished workpiece. Experimental data indicate different modes of tool wear throughout machining, where nonuniform flank wear and abrasive wear are the dominant wear modes. High cutting speed and low feedrate can reduce the tool wear rate and improve the tool life during micromachining.However, the low feedrate enhances the plowing effect on the cutting zone, resulting in reduced surface quality and leading to burr formation and premature tool failure. This study concludes with a proposal of tool rejection criteria for micro-milling of Ti-6 Al-4 V.  相似文献   

16.
In this article, response surface methodology has been used for finding the optimal machining parameters values for cutting force, surface roughness, and tool wear while milling aluminum hybrid composites. In order to perform the experiment, various machining parameters such as feed, cutting speed, depth of cut, and weight (wt) fraction of alumina (Al2O3) were planned based on face-centered, central composite design. Stir casting method is used to fabricate the composites with various wt fractions (5%, 10%, and 15%) of Al2O3. The multiple regression analysis is used to develop mathematical models, and the models are tested using analysis of variance (ANOVA). Evaluation on the effects and interactions of the machining parameters on the cutting force, surface roughness, and tool wear was carried out using ANOVA. The developed models were used for multiple-response optimization by desirability function approach to determine the optimum machining parameters. The optimum machining parameters obtained from the experimental results showed that lower cutting force, surface roughness, and tool wear can be obtained by employing the combination of higher cutting speed, low feed, lower depth of cut, and higher wt fraction of alumina when face milling hybrid composites using polycrystalline diamond insert.  相似文献   

17.
Monitoring the condition of the cutting tool in any machining operation is very important since it will affect the workpiece quality and an unexpected tool failure may damage the tool, workpiece and sometimes the machine tool itself. Advanced manufacturing demands an optimal machining process. Many problems that affect optimization are related to the diminished machine performance caused by worn out tools. One of the most promising tool monitoring techniques is based on the analysis of Acoustic Emission (AE) signals. The generation of the AE signals directly in the cutting zone makes them very sensitive to changes in the cutting process. Various approaches have been taken to monitor progressive tool wear, tool breakage, failure and chip segmentation while supervising these AE signals. In this paper, AE analysis is applied for tool wear monitoring in face milling operations. Experiments have been conducted on En-8 steel using uncoated carbide inserts in the cutter. The studies have been carried out with one, two and three inserts in the cutter under given cutting conditions. The AE signal analysis was carried out by considering signal parameters such as ring down count and RMS voltage. The results show that AE can be effectively used to monitor tool wear in face milling operation.  相似文献   

18.
The influence of tool coating and material on the machinability of low-leaded brass alloys (Pb < 0.2%) was analyzed in external turning. Carbide tools with various coatings as well as polycrystalline diamond (PCD) tools were applied. As workpiece materials, three low-leaded brass alloys CuZn38As, CuZn42, and CuZn21Si3P were used. Their machining behavior was compared to the leaded (Pb < 3.32%) brass CuZn39Pb3. CuZn38As showed the worst machinability in terms of process forces, chip formation, and workpiece quality. This is due to the high volume fraction of α-phase with face-centered cubic lattice structure. The machining problems were reduced by the use of tool coatings, in particular by a diamond-like carbon coating. The latter is characterized by high hardness, diamond-like cubic-crystalline lattice structure, and low chemical affinity to brass, which reduced friction in the secondary shear zone. CuZn42 exhibited an improved machinability compared to CuZn38As due to the lower volume fraction of α-phase. The positive influence of the tool coating was similar to CuZn38As. Main machining problem of CuZn21Si3P is tool wear because of the hard silicon-rich κ-phase. In tool life tests, PCD showed higher performance than uncoated and coated carbide tools due to its high abrasive wear resistance and low adhesion tendency.  相似文献   

19.
High-speed turning experiments on metal matrix composites   总被引:3,自引:0,他引:3  
The hard abrasive ceramic component which increases the mechanical characteristics of metal matrix composites (MMC) causes quick wear and premature tool failure in the machining operations. The aim of the paper is to compare the behaviour of high rake angle carbide tools with their diamond coated versions in high-speed machining of an Al2O3Al 6061 MMC. The influence of the cutting parameters, in particular cutting feed and speed, on tool wear and surface finish has been investigated. The higher abrasion resistance of the coatings results in increased tool life performances and different chip formation mechanisms.  相似文献   

20.
An experimental study was conducted to evaluate the performance of C6 tungsten carbide, C2 tungsten carbide, and Polycrystalline Diamond (PCD) inserts in cutting Graphite/Epoxy (Gr/Ep) composites. Continuous and interrupted cutting tests under dry conditions were made to cut woven fabric and tape Gr/Ep composites. It was found that continuous cutting mode and high cutting speeds significantly reduce tool life of carbides. Machining of tape Gr/Ep reduces the tool life more than the machining of fabric work pieces. Also, C2 grade carbide inserts had a longer tool life than C6 carbide inserts despite the type of work piece or machining condition used. It was observed that a PCD insert's life was about 100 times of C2 carbide inserts during continuous cutting and at high speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号