首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Role of three rare earth oxides, viz., La2O3, CeO2 and Yb2O3 on reaction sintering of magnesium aluminate spinel having molar ratio of MgO:Al2O3?=?1:2 from its solid oxide precursors was investigated in static and dynamic heating conditions. Effect of these additives (3?wt%) on densification behavior, phase assemblage and microstructure development were studied in the temperatures of 1500–1700?°C. Yb2O3 enhanced the sintering of spinel, while La2O3 and CeO2 negatively impacted the sintering of magnesium aluminate spinel which can be discerned from the shrinkage curve of TMA as well as from static firing regime. This is ascribed to the formation of secondary phases in La2O3 and CeO2 containing samples which have different crystalline structures to that of spinel. This anisotropy due to different crystallinity hindered the pore shrinkage and pore removal and thereby retarded the densification. Whereas, the cubic structure of the secondary phase formed in Yb2O3 containing sample which is isotropic with the crystalline orientation of the parental spinel phase assisted the densification.  相似文献   

2.
Three mixes of calcium aluminate cements containing MA spinel were prepared using appropriate mixtures of Egyptian dolomite (MgO, 20.16% and CaO, 31.32%) with active alumina (99.50% A)1. The cement mixes were prepared at 1600°C using the sintering method. The products were finely ground and their chemical and mineralogical compositions were investigated using the appropriate techniques. Also, their physicomechanical and refractory properties had been determined. The results indicated that their mineralogical compositions were refractory MA spinel, in addition to CA and/or CA2 phases depending on the composition of the starting materials. The prepared cements exhibited a compromise between considerable strength and higher refractoriness. When 10% of such cements were added to refractory grade magnesia aggregate, in the presence of 0.1% Li2CO3 as a strength modifier, refractory castable bodies with improved hot-strength and thermal shock resistance had been achieved.  相似文献   

3.
Magnesium aluminate spinel (MAS) was prepared using the simultaneous precipitation method by varying the concentration of Li2O from 0 to 5 mol%. No residual chlorine from the LiCl precursor was detected in the final powders while Li achieved the target concentration in all samples and contributed to stabilizing nanoparticles smaller than 10 nm. Li segregation to both interfaces (surfaces and grain boundaries) occurred and tended to be more pronounced at the grain boundaries stabilizing this type of interface during processing rather than surfaces. Spark plasma sintering (SPS) was used to consolidate the nanopowders into fully dense nanostructured pellets. The increase in Li content facilitated the sintering process and pore elimination occurred at 850–900 °C, a much lower temperature range as compared to conventional sintering (1650 °C). Samples containing 5 mol% Li sintered at 850 °C exhibited a medium grain size of ?25 nm, microhardness of ?24 GPa and ?50% in-line optical transmission at the 800 nm.  相似文献   

4.
Lithium hydroxide, LiOH, in the amounts ranging from 0.1 to 1.2 wt% has been used as a sintering aid to improve the densification of MgAl2O4. The addition of 0.3 wt% LiOH promotes densification and limits grain growth. The activation energy of sintering, calculated using master sintering curve approach, decreases from 790 ± 20 kJ.mol?1 to 510 ± 20 kJ.mol?1 with the addition of 0.3 wt% of LiOH. In addition, MgAl2O4 was also mixed with 10 wt% of LiOH to amplify the formation of reaction products. High-temperature XRD results showed that secondary phases (MgO and LiAlO2) are produced above 1040 °C. The secondary phases start to disappear at T > 1200 °C, and MgAl2O4 is produced. While adding small amounts of LiOH, up to ca. 0.3 wt%, is beneficial for densification and suppressing grain growth, there exists a critical concentration of Li+ that is accounted for by the preferential incorporation of lithium ions into MgAl2O4 crystal lattice.  相似文献   

5.
In order to fully exploit the green characteristics of solid base catalysts they should be fabricated into macrostructured rather than powder form. Magnesia-rich magnesium aluminate spinel (MgO·MgAl2O4) framework catalysts with tunable basicity have been prepared by using γ‐Al2O3 macrospheres (0.5-1.0 mm in diameter) as a hard template. The process involves in situ growth of magnesium-aluminum layered double hydroxides (MgAl-LDHs) in the channels of the γ‐Al2O3 macrospheres by the urea hydrolysis method, followed by calcination, tuning of the basicity through etching of excess aluminum with aqueous alkali and a final calcination step. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), elemental analysis and low temperature N2 adsorption-desorption studies demonstrate that the composite MgO·MgAl2O4 materials are composed of nanosized rod-like particles aggregated into a spherical framework. Catalytic reactivity was investigated by using methanolysis of soybean oil as probe reaction. The MgO·MgAl2O4 composite shows a higher biodiesel yield compared to an MgO/MgAl2O4/γ‐Al2O3 material with the same loading of magnesium prepared by a conventional impregnation method. The enhanced catalytic activity of the former material can be ascribed to its higher basicity, specific surface area, pore volume and pore size.  相似文献   

6.
Magnesium aluminate spinel is widely used in cement rotary kilns, in the iron and steel industries, as well as in glass melting furnaces due to its excellent performance and chemical stability at both room temperature and elevated temperatures. In spite of these advantages, there are some practical problems during production of magnesium aluminate spinel refractories due to their poor sinterability: poor mechanical properties and poor creep resistance. These issues can cause problems during service. This study improved the sinterability of spinel refractories and in turn improved mechanical properties while decreasing the creep rate. This was done by forming a second low creep rate phase of yttrium aluminum garnet in the matrix structure. The addition of Y2O3 and reactive Al2O3 accelerated the densification process and increased the cold strength. There was a significant increase in the hot modulus of rupture due to the formation of YAG or the solid solution with spinel.  相似文献   

7.
为了实现水煤浆气化炉炉衬材料的无铬化,研究开发合适的耐火材料代替水煤浆气化炉用高铬砖,以尖晶石骨料及细粉、α-Al_2O_3微粉和轻烧Mg O微粉为原料,于1 600℃保温5 h烧成,制备了φ50 mm×40 mm、内孔为φ25 mm×25 mm的镁铝尖晶石质坩埚试样。采用静态坩埚法,借助XRD、SEM+EDS研究了高温煤熔渣对试样的侵蚀行为。结果表明:1)侵蚀后的镁铝尖晶石材料结构疏松,出现较明显的裂纹,煤熔渣完全渗入试样内部。2)经煤熔渣侵蚀后的镁铝尖晶石材料,物相组成发生变化,除原有的镁铝尖晶石外,还有新物相镁铁铝复合尖晶石相存在。3)煤熔渣对镁铝尖晶石材料的侵蚀机制是物理渗透为主,化学熔蚀为辅。  相似文献   

8.
以低品位菱镁矿与工业铝灰为原料制备镁铝尖晶石材料。分析讨论了不同煅烧温度对工业铝灰材料组成与微观结构的影响,并进一步研究了煅烧温度对制备镁铝尖晶石材料的组成、镁铝尖晶石相晶胞常数及材料微观结构的影响。用X射线衍射(XRD)和扫描电镜(SEM)对煅烧后试样的物相和显微结构进行研究。利用X′ pert plus软件对试样中主晶相的晶格常数进行计算,比较不同温度煅烧试样的相对结晶度。结果表明:随着工业铝灰煅烧温度的升高,材料中主晶相六方晶型的刚玉相晶胞常数呈现各向异性的变化趋势。低品位菱镁矿与工业铝灰经1 400 ℃高温煅烧可以制备出以镁铝尖晶石为主晶相的镁铝尖晶石材料,该温度煅烧的镁铝尖晶石材料晶粒相对均匀、结构相对致密,主晶相镁铝尖晶石相晶格常数最大。  相似文献   

9.
Magnesium aluminate-based materials were prepared by applying different methods: (i) mechanochemical milling of the initial mixture of magnesium and aluminium nitrate powders (in appropriate stoichiometric amounts) followed by heat treatment at temperatures of 650 °C and 850 °C and (ii) melting of the mixture of nitrate precursors at 240 °C followed by thermal treatment at 650 °C, 750 °C and 850 °C. The effect of synthesis method on the structure and morphology of the obtained solids was studied by using various techniques such as: nitrogen adsorption-desorption isotherms, powder XRD, IR spectroscopy and SEM. It was shown that the mechanochemical milling performed before calcination procedure leads to obtaining of nanocrystalline magnesium aluminate spinel phase at lower temperature of 650 °C in comparison with the method using thermal treatment only (at 750 °C). The obtained nanomaterials exhibit mesoporous structure.  相似文献   

10.
The mechanistic pathway of MgO-Al2O3 reaction in solid state to form MgAl2O4 spinel was investigated to correlate the kinetic parameters with ratio of reactants (MgO:Al2O3) and with the presence of a doping agent, TiO2. The time-temperature-expansion data of oxide compacts was analyzed using several model free analyses and model based (linear and non-linear) kinetic algorithms. These indicated that spinel formation process can be best described by single step with n-dimensional Avrami equation for every MgO:Al2O3 ratio, irrespective of titania dopant. The activation energy (Ea) of the process was proportional to % spinel formed in each system and validated with quantitative XRD analysis. The higher value of Avrami coefficient (n) in 90 wt% Al2O3 compositions has been explained with geometric considerations of powder packing. Incorporations of 1% TiO2 in the MgO: Al2O3 oxide compact did not markedly affect the reaction model, frequency factor and Activation energy.  相似文献   

11.
A new simple soft chemical method – synthesizing nanocrystalline MgAl2O4 spinel powder with oxalic acid as organic template and nitric acid as an oxidizing agent – is described. The method was developed with the objective of obtaining phase pure nanocrystalline MgAl2O4 spinel powder with uniform particle size and morphology at a much lower temperature than that used by conventional methods. The synthesized powders were characterized by X-ray diffractometry (XRD), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FTIR), surface area analysis (BET) and field emission scanning electron microscopy (FE-SEM). The average crystallite size of the single phase material was 30 nm. Through this method, porous MgAl2O4 powder with a high surface area of 162.2 m2g−1 and 141 m2g−1 was obtained at 600 °C and 700 °C, respectively.  相似文献   

12.
The solid solubility of magnesia in magnesium aluminate spinel and magnesium aluminate spinel in magnesia does not change with temperature thus not creating bonds or precipitation over periclase grains in a single stage sintering process. In comparison, the precipitated spinels in magnesia-chromia refractories form complex spinel due to inversion in the position of bivalent and trivalent cations within the structure, making them more stable at high temperature than either normal or inverse spinel. Additives form low-temperature compounds that diffuse into the spinel structure and create defects that change the properties of spinel solid solution. In the present study, magnesia and alumina powders along with tetravalent oxide additives were analyzed for their role in reactive densification of spinel in a single stage firing process in order to achieve a better binding system for magnesia-based refractories. These tetravalent oxides on reaction with magnesia form spinel solid solution with MgAl2O4 as they have similar crystal structure. The spinel solid solution formed using oxide additives is expected to have higher solubility in magnesia than magnesium aluminate spinel, resulting in improvement of the bonding during sintering through increased in solid solubility at elevated temperatures followed by precipitation of secondary spinel phases, similar to the complex spinel in magnesia-chrome refractories. The formation of spinel during firing remains as a second phase that retards the grain growth of periclase. The changes in unit cell dimensions with temperature and amount of additive were analyzed using Reitveld method and correlated with the densification behaviour at different temperatures.  相似文献   

13.
为降低合成钛酸铝材料的原料成本,以铁合金厂铝钛渣为主要原料,按71.5%(w)铝钛渣和28.5%(w)二氧化钛粉的基础配方,分别外加质量分数1%、2%、3%和4%的添加剂镁铝尖晶石,以聚乙烯醇溶液为结合剂,经湿磨、干燥、机压成型后,分别在1 400、1 450和1 500℃保温2 h合成了钛酸铝材料,然后检测其体积密度和显气孔率,运用XRD和SEM分析物相组成和显微结构,并运用X’Pert Plus软件计算钛酸铝的晶格常数。结果表明:镁铝尖晶石中Mg2+对钛酸铝中Ti4+的置换作用导致钛酸铝的晶格常数增大,晶格发生畸变,从而促进钛酸铝的合成及其烧结;随着合成温度的升高,上述置换作用和促进钛酸铝合成、烧结的效应增强。  相似文献   

14.
Two samples of zinc aluminate were hydrothermally synthesised from zinc acetate and different aluminium sources: basic aluminium nitrate or aluminium hydroxide. The textural properties of the prepared ZnAl2O4 samples are different from these one of the zinc aluminate prepared by conventional way. Powder XRD and TEM measurements reveal that samples are single-phase material or mixture of ZnAl2O4 with small amount of γ-Al2O3, with morphology of quasi-spherical shape. Catalytic properties of the hydrothermally obtained zinc aluminate and Pt (Pd) catalysts supported on them were investigated in the reactions of cyclohexene isomerisation and combustion of trichloroethylene, respectively. It was evidenced that activity and selectivity of the investigated materials could be qualitatively correlated with the part of the strong acid centres measured by TPD of NH3.  相似文献   

15.
设计不同的水泥熟料物相组成,以石灰石、重烧氧化镁和铝矾土熟料为原料,于1400℃3h处理后制备了含不同量镁铝尖晶石相的铝酸盐水泥。利用XRD和SEM对不同配比的合成产物的物相及形貌特征进行了分析,并对这种新型铝酸盐水泥浇注料进行了抗压强度的测试。结果表明:含镁铝尖晶石的铝酸盐水泥的主要物相为一铝酸钙(CA)、镁铝尖晶石(MA)和二铝酸钙(CA2),还有少量的硅铝酸二钙(C2AS)和残余刚玉(α-Al2O3);浇注料的强度随MA含量的减小而增大,且随水化时间延长,其强度增进稳定。  相似文献   

16.
The sintering behavior of commercially available MgAl2O4 spinel was investigated under DC electric field in a range of 0 and 1000 V/cm. Flash‐sintering results in densification close to theoretical density at 1410°C under the DC field of 1000 V/cm, in comparison to the higher sintering temperature of 1650°C in case of conventional sintering. It was observed that the fields less than 750 V/cm had no significant effect on the densification behavior. An abrupt increase in power dissipation was observed corresponding to the occurrence of the flash event. A significant enhancement in grain size was observed in case of flash‐sintered dense spinel samples. The gradual increase in the specimen conductivity observed in the electric field‐assisted sintering (FAST) regime led to Joule heating within the specimen. The increased specimen temperature triggered further increment of current and Joule heating, resulting in the immediate densification.  相似文献   

17.
《Ceramics International》2023,49(1):755-765
Dense magnesium aluminate (MgAl2O4) spinels were developed via single-stage solid-state reaction sintering method at 1550–1650oC using combinations of varied commercial grade reactants-three different sources of alumina and two different sources of magnesia. The effect of Y2O3 doping in the concentration range of 1–4 wt % on different spinel batches was studied. Y2O3 addition was found to favour the densification of all the spinels at all dopant concentrations and maximum densification was found for the 2 wt % Y2O3 containing spinel batches. Phase analysis of the Y2O3 containing batches revealed the presence of yttrium aluminum garnet (YAG, Y3Al5O12) at all the sintering temperatures. Owing to similar crystal structure isotropic configuration of YAG (cubic) as that of spinel (cubic), Y2O3 doping was found to favour densification of spinel. Microstructural investigation revealed that Y2O3 containing batches have a controlled grain structure as compared to the without additive batches. Also, 2 wt % Y2O3 containing spinel batches sintered at 1650oC revealed better mechanical properties such as cold modulus of rupture and strength retainment after thermal shock than that of the undoped spinel batches.  相似文献   

18.
In this paper, a transparent magnesium aluminate spinel ceramic was fabricated through the newest colloidal gel casting method, using a synthetic powder with the average particle size of 90 nm and Isobutylene-Maleic Anhydride (ISOBAM) additive. ISOBAM served as both a dispersant and a gelation agent to achieve a dense body. Also, the suspension rheological behavior was optimized by the solid loading of 85 wt%, the additive content of 0.7 wt%, and the gelation time of 350 s. This led to a green body with a density equal to 65% of theoretical density and the green strength of 14.48 MPa. The results revealed that the reduction of porosity and the uniform distribution of pores in the green body (smaller than half of the initial powder particle size, 35 nm), as accompanied by spark plasma sintering (SPS), resulted in the final body density of 99.97%, as well as the high in-line transmittance of 86.7% at the wavelength of 1100 nm.  相似文献   

19.
按天然白云石(≤0.1mm)与工业氧化铝粉(≤0.088mm)的质量比为45∶55配料,经混合、成型和烘干后,于1600℃3h煅烧,细磨烧结体得到含镁铝尖晶石的新型铝酸盐水泥。测量了新型铝酸盐水泥的凝结时间、耐火度以及用其所结合高铝矾土制成的耐火浇注料的早期强度;利用XRD、SEM和EDS分析了新型铝酸盐水泥的物相组成及其形貌和分布,同时采用静态坩埚法对比了新型铝酸盐水泥和纯铝酸钙水泥结合刚玉浇注料的抗渣性差异。结果表明:新型水泥的物相组成为镁铝尖晶石(MA)、一铝酸钙(CA)和二铝酸钙(CA2),且这3个物相的分布较为均匀;新型水泥的凝结时间正常,耐火度高于纯铝酸钙水泥;用新型水泥制得的刚玉浇注料抗渣性好;其原因是新型水泥组成中引入了镁铝尖晶石相,而镁铝尖晶石具有较高的熔点和抗熔渣侵蚀能力。  相似文献   

20.
Precipitation of Al2O3 from nonstoichiometric, dense spinel was examined with the intent to design strengthened transparent ceramics. Powders of magnesium aluminate spinel, MgO·nAl2O3, with compositions n=1 and 2 were uniaxially hot‐pressed at 1873 K, hot isostatically pressed at 2073 K, and heat treated in air or vacuum at 1573 K for 1, 5, 10, 15, and 20 hour. It was observed that precipitation of α‐Al2O3 in n=2 material initiated from the surface and progressed to various depths, with greater depths corresponding to treatments in air. The kinetics are shown to be limited by the diffusion of oxygen through the reacted layer. The results reveal that the environment used to densify spinel has a large influence on the evolution of the two phase microstructure during subsequent heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号