首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用混凝法分别以聚合氯化铁(PFC)、聚合氯化铝(PAC)和聚合硫酸铁(PFS)为混凝剂处理天津某石油化工厂二级氧化处理工艺出水,PFC对废水COD的去除效果最好,在PFC加入量为120mg/L时,废水的COD去除率最高,为22.35%。经正交实验确定了Fenton试剂氧化法处理废水的最佳实验条件为:Fe^2+加入量290mg/L、H2O2加入量100mg/L、pH=6、反应时间30min,此时COD去除率为20.45%。活性炭吸附法对废水的处理效果随活性炭加入量增加而改善,活性炭的最佳加入量为2000mg/L,此时废水的COD去除率最高,为87.78%。  相似文献   

2.
Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水   总被引:5,自引:3,他引:5  
采用Fenton氧化一生物接触氧化工艺处理含甲醛和乌洛托品的模拟废水(简称废水),在H2O2(体积分数30%)加入量2.5g/L、H2O2与Fe^2+质量浓度比3.75、反应时间3h、不调节废水初始pH的Fenton氧化预处理最佳操作条件下,废水COD从1000mg/L左右降至300mg/L,COD去除率达72%。原废水完全无法直接进行生化处理,经Fenton氧化预处理后其BOD,/COD约为0.5,易于生化处理。Fenton氧化一生物接触氧化工艺处理废水,生物接触氧化停留时间为12h时,废水COD去除率高达94%,处理后出水COD小于70mg/L,处理效果很好。  相似文献   

3.
用酸析-Fenton试剂氧化-混凝法对自偶氧化清洁制浆废水进行预处理,考察了各种因素对处理效果的影响。最佳处理条件:酸析时的废水pH为3.0;酸析后上层清液无需调节pH,加水稀释至COD为2000mg/L后进行Fenton试剂氧化,H2O2加入量为84.56mmol/L,FeS04加入量为8.44mmol/L,反应时间60min;混凝时Ca(OH):加入量为2g/L。最终出水的COD为577.20mg/L(COD去除率为71.14%),色度为36倍,pH为8.60。  相似文献   

4.
树脂吸附—Fenton氧化法处理精对苯二甲酸废水   总被引:5,自引:1,他引:4  
采用树脂吸附-Fenton加氧化法处理精对苯二甲酸(PTA)废水,考察了树脂吸附及Fenton氧化的最佳工艺条件。实验结果表明,采用NDA-88吸附树脂,在室温、吸附流速2BV/h条件下,每批次处理量为28BV,COD去除率为80%左右;采用Fenton试剂进一步氧化处理,在废水pH为3、质量分数30%的8202加入量为1.2%(体积分数)、H2O2与Fe^2+摩尔比为3:1、反应温度为40℃、反应时间为4h条件下,出水COD为72mg/L,COD去除率为87%,可达到国家一级排放标准。  相似文献   

5.
Fenton试剂氧化—石灰法处理苎麻脱胶废水   总被引:3,自引:0,他引:3  
采用Fenton试剂氧化一石灰法处理苎麻脱胶废水(简称废水)。在pH为8.3的废水中FeSO4·7H2O、H2O2、饱和石灰乳的加入量分别为1.5g/L、1.0mL/L和1.0mL/L的条件下对废水进行处理,废水COD由650mg/L降至200mg/L以下,COD去除率约为70%;色度由500倍降至70倍以下,色度去除率约为90%,出水COD和色度均达到GB8978-1996(污水综合排放标准)中的二级排放标准。  相似文献   

6.
徐文倩 《化工环保》2013,33(4):316-320
采用混凝-Fenton试剂氧化或混凝-臭氧氧化两种氧化技术预处理上海某医药集团原料药废水。实验结果表明:采用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)复合混凝处理该废水,在混凝pH为9.5、混凝时间1h、PAC和PAM加入量分别为600mg/L和12mg/L时,COD的去除率可达23%;混凝后废水再分别用臭氧氧化和Fenton试剂氧化处理,臭氧氧化明显比Fenton试剂氧化经济有效,在臭氧氧化pH为10、臭氧加入量为15g/L、臭氧氧化时间为1h的条件下,废水COD去除率为27.8%,废水BOD5/COD明显提高,为后续生化处理提供了良好的条件。  相似文献   

7.
活性炭/H2O2催化氧化-絮凝法预处理化工有机废水   总被引:5,自引:3,他引:2  
用活性炭作催化剂、H2O2作氧化剂催化氧化预处理高浓度化工有机废水,考察了各种因素对COD去除率的影响。实验结果表明,在H2O2加入量为0.8mL/L、活性炭与H2O2质量比为0.7、废水pH为4的条件下,反应120min后,调废水pH至8,加入絮凝剂聚合氯化铝进行絮凝沉淀,废水COD去除率达70%以上,色度去除率达80%以上。通过色谱-质谱仪对处理前后废水中的有机物进行分析,初步探讨了活性炭/H2O2催化氧化-絮凝法预处理化工有机废水的作用机理。  相似文献   

8.
微波-改性活性炭-Fenton试剂氧化法降解水中2,4-二氯酚   总被引:7,自引:2,他引:5  
以经Fe2(SO4)3溶液浸渍改性的活性炭作催化剂、Fenton试剂作氧化剂,采用微波-改性活性炭-Fenton试剂氧化法降解水中的2,4-二氯酚。考察了改性活性炭加入量、H2O2与Fe^2+摩尔比、Fenton试剂加入量、微波功率和2,4-二氯酚溶液初始pH对2,4-二氯酚降解效果的影响。在改性活性炭加入量1.0g/L、n(H2O2):n(Fe^2+)=16.7(H2O2加入量6.0mmol/L、Fe^2+加入量0.36mmol/L)、Fenton试剂加入量为6.36mmol/L、微波功率600W、微波辐射时间10min、2,4-二氯酚溶液初始pH为6.0的条件下,2,4-二氯酚降解率和TOC去除率分别可达98.7%和84.0%。  相似文献   

9.
pH调节-Fenton试剂氧化法预处理间甲酚生产氧化废水   总被引:15,自引:2,他引:13  
采用pH调节结合Fenton试剂氧化的方法对间甲酚生产氧化废水进行预处理,探讨了pH调节条件及Fenton试剂氧化条件对废水处理效果的影响。结果表明,在室温下将废水pH调节至4.0时,由于其中的部分有机污染物析出,COD可以从78000mg/L下降至61000mg/L,COD去除率达20%以上;接着在H2O2质量浓度与COD的比值为0.18、Fe^2+与H2O2质量浓度的比值为0.267、反应时间为20min的条件下对废水进行Fenton试剂氧化处理,COD可以进一步下降至26000mg/L,COD去除率接近70%。  相似文献   

10.
铁炭微电解-Fenton试剂氧化法预处理广灭灵及丙草胺废水   总被引:3,自引:1,他引:3  
采用铁炭微电解~Fenton试剂氧化法预处理广灭灵和丙草胺废水(简称废水),考察了H2O2加入量、高浓度废水COD对废水处理效果的影响,进行了连续流废水处理实验。实验结果表明:Fenton试剂氧化反应的废水处理效果明显好于铁炭微电解反应;铁炭微电解对COD的去除率可达60.6%,Fenton试剂氧化反应后COD的总去除率可达72.3%;连续流废水处理效果差于静态实验。处理后,低浓度废水的BOD,/COD从0.28~0.32增至0.47,高浓度废水的BOD,/COD从0.39增至0.47。  相似文献   

11.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

12.
采用吸附-Fenton氧化-絮凝法处理对硝基苯胺生产废水(简称废水),研究了吸附剂、脱附温度、絮凝剂等因素对处理效果的影响.经实验确定的最佳工艺条件为:DM301大孔树脂加入量5.0 g/L,吸附时间20 h,Fenton氧化pH 3.0,H_20_2加入量0.3 moL/L,m(Fe):m(H_20_2)=6,絮凝阴离子型聚丙烯酰胺加入量20 mg/L.在此条件下对COD为2 780 mg/L、色度为185倍和pH为12.2的废水进行处理,出水的COD、色度和pH分别为169 mg/L、10倍和6.5,COD去除率和色度去除率分别达到93.9%和94.5%.DM301树脂在10~25次重复使用后对硝基苯胺的平均总去除率为47.7%,对硝基苯胺的平均回收率为37.9%.  相似文献   

13.
分别采用臭氧氧化和Fenton氧化两种高级氧化法对毛皮加工工业园区集中废水处理厂的进水进行了预处理,考察了各工艺条件对废水COD去除效果的影响,并比较了两种方法对废水可生化性的改善情况。实验结果表明:在初始废水pH为8、臭氧投加速率为1.2 g/h的最适宜条件下,臭氧氧化法的COD去除率最高达72.7%,废水的可生化性显著提高,废水BOD5/COD由初始的0.06提高至0.12;在,n(Fe~(2+)):月(H_2O_2)=1:10、H_2O_2投加量为1.5 mL/L,、初始废水pH为2.5的最适宜条件下,Fenton氧化的COD去除率最高达33.4%,但废水可生化性不大;经臭氧氧化和Fenton氧化处理后,废水中的不饱和结构物质均得到了有效降解。  相似文献   

14.
采用混凝—Fenton法深度处理维生素B12废水,考察各操作参数对COD和色度去除效果的影响。实验结果表明:当混凝pH 4.5、聚合硫酸铁加入量300 mg/L、氧化pH 4.0、H2O2加入量420 mg/L、FeSO4?7H2O加入量334 mg/L、Fenton反应时间3 h时,混凝—Fenton法对维生素B12废水的深度处理效果较好,总COD和总色度的去除率分别为62.1%和90.0%;与Fenton法相比,混凝—Fenton法COD和色度去除率的提高率分别为17.4%和13.8%,且药剂成本降低了21.6%。  相似文献   

15.
胡绍伟  王飞  陈鹏  王永  徐伟 《化工环保》2014,34(4):344-347
采用内电解—Fenton氧化—絮凝沉淀的化学集成技术预处理焦化废水,优化了各工段的运行参数。实验结果表明:在钢铁铁屑与活性炭的体积比为1∶1的条件下,内电解工段的优化参数为进水pH 2.6~3.1、HRT=1.0 h;Fenton氧化工段的优化参数为Fe2+加入量200 mg/L、H2O2加入量1 000 mg/L、进水pH 3.0左右、反应时间1.0 h;絮凝沉淀工段的设定参数为进水pH 9.5~10.0、聚丙烯酰胺加入量1 mg/L、静置沉降0.5 h。在上述工艺条件下,该集成技术对废水的总COD去除率大于55%,处理后的废水BOD5/COD大于0.28,不添加稀释新水即可进入后续生化处理系统。该工艺占地面积小、系统结构简单、易于工业化,废水预处理成本为4~5元/t。  相似文献   

16.
采用Fenton试剂氧化—SBR工艺处理阿莫西林制药废水生化处理出水。实验结果表明:当初始废水pH为3.0、H2O2加入量为10 mL/L、V(H2O2):m(FeSO4.7H2O)为5(mL):1(g)、Fenton试剂氧化反应时间为3 h时,Fenton试剂氧化COD去除率达72.25%,色度由100倍降为2倍,BOD5/COD由0.06提高到0.38,可生化性显著提高。经Fenton试剂氧化—SBR工艺处理后,出水COD为72.7 mg/L,达到国家排放标准。  相似文献   

17.
采用酸析—撞击流旋转填料床( IS-RPB)强化Fenton试剂氧化法预处理二硝基甲苯(DNT)生产废水.最佳工艺条件为:酸析工段废水pH 1.0,IS-RPB转速1 500 r/min,FeSO4加入量0.06 mol/L,H2O2加入量0.45mol/L,反应温度40 ℃,反应时间4h.在该条件下处理DNT生产废水,COD去除率可达98.95%,硝基化合物去除率达98.32%,BOD5/COD为 0.65.经该方法预处理后的DNT生产废水可适用于生化法进行后续处理.  相似文献   

18.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号