首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
本文采用静电纺丝法制备了聚乳酸(PLA)纳米纤维毡片,并首次研究了PLA纳米纤维微观结构对材料吸油性能的影响机制。扫描电子显微镜(SEM)表征显示前驱体溶液浓度对PLA静电纺丝纳米纤维直径具有显著影响,较高的浓度导致纳米纤维直径变大,10wt.%的前驱体溶液浓度可获得直径为50~100nm的均匀纳米纤维。接触角测定发现优化后的PLA纳米纤维材料具有超疏水超亲油特性。系统研究了PLA静电纺丝纳米纤维毡片对柴油、润滑油和植物油的吸附性能,发现PLA静电纺丝纳米纤维对柴油、润滑油和植物油的最大吸油倍率分别达到37、116和51g/g。实验模拟发现所制备的PLA纳米纤维材料具有吸油倍率高,吸水率低和可生物降解等特点,可用于吸附水面溢油。  相似文献   

2.
以超临界二氧化碳为发泡剂,通过连续挤出发泡法制备聚丙烯/线型低密度聚乙烯(PP/LLDPE)共混物开孔泡沫,并用于吸油性能研究。文中系统研究了发泡温度、原料配比和口模直径对PP/LLDPE泡沫开孔结构和吸油倍率的影响,并研究了泡沫的亲油疏水性和吸油的重复使用性。结果表明,当发泡温度为170℃,LLDPE的含量为10%,口模直径为0.5 mm时,发泡样品的密度低、开孔率高、吸油倍率高;PP/LLDPE泡沫对水的接触角为137.8°,疏水性能好;对机油10次重复使用后仍具有很高的吸油倍率。因此,该复合开孔泡沫在污水处理、溢油事故和环境保护中具有潜在的应用价值。  相似文献   

3.
采用无溶剂的熔体静电纺丝技术制备可降解聚乳酸(PLA)纳米纤维,是一种很有前景和挑战性的绿色制备技术。其制备的纳米纤维膜孔隙率高、吸附能力强,可高效地处理环境污染问题。借助自制的熔体微分电纺装置,在PLA中引入了有机改性蒙脱土(OMMT),在260℃下制备了PLA/OMMT纳米纤维膜。探究了OMMT含量对PLA纤维形貌、吸油性能、空气过滤性能及降解性能的影响,并获得了最佳的OMMT配比含量。研究表明:加入OMMT后PLA热稳定性提高,结晶度大幅降低。OMMT质量分数为2%时制备的纤维,其直径为450nm。该纤维膜吸油倍率为133.5g/g,是市售PP无纺布的4~5倍,保油倍率为84.2g/g,具有良好的重复使用性能。针对粒径≥0.3μm尘埃粒子的空气过滤效率为99.31%,达到欧标H11过滤等级。且相比于纯PLA纤维膜降解性能提高,减少了二次污染,符合工业化绿色环保要求。  相似文献   

4.
为拓展碳纳米纤维在环境清洁领域的应用,提高碳纳米纤维的水接触角,改善膜表面的疏水性能,获得疏水性较好的碳纳米纤维薄膜,利用静电纺丝法将纳米纤维素(CNFs)与碳纳米纤维前驱体复合,获得具有低表面能和良好疏水性能的纳米碳纤维/纳米纤维素复合纤维膜。通过对纳米纤维素含量进行调控,经预氧化和碳化处理后得到一系列具有规则三维空间网络结构的复合纤维膜,并探究不同纳米纤维素含量对复合纤维膜疏水性能的影响。结果表明:纳米纤维素修饰复合纤维膜随着碳化程度的提高其表面能呈现逐渐降低的趋势,其对水的接触角也逐渐增大,疏水效果得到较大幅度提升。随着纳米纤维素含量继续增加,复合纤维膜的水接触角呈上升趋势,未添加前接触角为36.13°,当纳米纤维素添加质量为20%时,水接触角最大为132.14°,提高了366%。  相似文献   

5.
采用静电纺丝技术制备了超疏水超亲油具有空心微球结构的聚偏二氟乙烯(PVDF)纳米纤维。通过扫描电镜(SEM)对样品的表面形貌及纤维直径的变化进行了表征。通过视频显微镜对纳米纤维表面与水的接触角和水滴照片进行测量与拍照。研究了不同结构的PVDF纳米纤维对润滑油的吸附性能。结果表明:PVDF/N,N-二甲基甲酰胺/H_2O静电纺丝溶液中水含量达到2.5%时得到具有空心微球结构的纳米纤维,纤维表面的水接触角为153.55°,其吸油率达到21.48g/g。  相似文献   

6.
通过将具有良好弹性的TPU加入PS溶液中进行静电纺丝,成功制备出一系列不同比例的PS/TPU复合纳米纤维膜。润湿性测试结果表明:纤维膜具有疏水亲油性质。吸油性能表明:PS/TPU复合纳米纤维膜具有高吸油性能,且随着纳米纤维膜中TPU含量的增加,纳米纤维膜对机油、硅油、花生油的吸油量逐渐减小。同时,该复合纳米纤维膜具有良好的循环利用性能,因此该复合纳米纤维膜在处理油污污染方面具有很好的应用前景。  相似文献   

7.
采用静电纺丝方法,在单一聚乳酸(PLA)纳米纤维基础上负载茶多酚(TP),制备出不同质量混比的PLA/TP复合纳米纤维膜,并通过差示扫描量热仪(DSC)及接触角仪对该材料的热性能及润湿性能进行测试分析。DSC测试结果表明,相较于纯PLA纳米纤维膜,添加TP后的复合纳米纤维膜的玻璃化转变温度(Tg)数值上没有较大变化,熔融温度(Tm)有上升趋势,并且两者峰型均变得不显著。接触角测试结果表明,添加TP后的复合纳米纤维膜的接触角较纯PLA纳米纤维膜有减小趋势,并且随着复合薄膜中PLA含量的减少,TP含量的增加,接触角继续减小,润湿性能得到一定的改善,但仍属于疏水材料范畴。  相似文献   

8.
通过静电纺丝法制备了茶多酚(TP)-聚乳酸(PLA)/聚碳酸丁二醇酯(PBC)复合纤维膜。并采用SEM、FTIR、TG、接触角和抑菌测试进行了表征。研究表明,TP与PLA/PBC复合纤维薄膜共混良好,并且通过接触角测试10 s后接触角从105.42°下降到69.41°,TP的加入使TP-PLA/PBC复合纤维膜的热分解稳定性提高。随着TP含量的增加,纤维直径分布逐渐均匀并且趋于减小。TP-PLA/PBC复合纤维膜的抗菌活性远高于PLA/PBC复合纤维膜,对大肠杆菌(E.coli)的抗菌活性也略高于金黄色葡萄球菌(S.aureus)。当TP的添加量(与PLA/PBC的质量比)为20%时,得到了亲水性、热稳定性和抗菌性能优异的TP-PLA/PBC复合纤维膜。   相似文献   

9.
赵婧  杨庆 《膜科学与技术》2013,33(4):35-41,62
为综合聚乳酸(PLA)和聚己内酯(PCL)的性能,将PLA和PCL原料进行熔融共混挤出造粒,再利用溶液浇铸的方法制备不同比例的PLA/PCL共混膜,并对其性能进行一系列的表征和讨论.研究结果表明,PLA与PCL可以以一定比例共混并浇铸成膜.共混膜的红外光谱中没有出现新的特征峰,说明两者共混过程中没有发生化学反应.共混膜的DSC曲线及扫描电镜图表明,PLA与PCL是不相容体系.接触角测试表明,共混膜具有比纯PLA膜和纯PCL膜更好的水润湿性.力学性能测试表明,PLA/PCL共混膜可以克服单一材料力学性能上的缺陷.  相似文献   

10.
通过静电纺丝制备疏水性PVDF/PBS纤维膜,并利用PVDF对PBS进行疏水改性。研究表明,PVDF的引入能使纤维膜的水接触角从86.5°转变至137.4°,表明PVDF能够有效改善PBS的疏水性。并且,PVDF的引入能够显著提高纤维膜的成膜性能与油水分离效率,并使纤维膜的油通量最高可达582L/(m~2·h)。  相似文献   

11.
利用磁控溅射法在聚丙烯(PP)纤维膜上溅射SiO2纳米粒子,制备超疏水超亲油纤维膜,用于油水分离领域中。在PP纤维膜上溅射SiO2纳米粒子增加表面粗糙度,降低表面能达到超疏水的效果。通过调节溅射功率,改变疏水效果,当溅射功率为100W时,纤维膜的疏水性能最好,对水的接触角高达162.8±2.1°,对油的接触角为0°。更重要的是,PP-SiO2纤维膜在油水分离过程中仅仅依靠重力驱动,能够使油和水快速分离并且重复使用10次之后依然保持超疏水性,分离效率保持在90%左右,这将在工业油污和海洋溢油处理中,提供了新的材料。  相似文献   

12.
以棉短绒为基材,实验11组不同体积密度样本的吸油倍率、吸水率等指标,发现随体积密度的增加,吸油倍率先增加后减小,重复使用性能变好。以吸油倍率15g/g、重复使用比率90%为参考值,最佳体积密度范围在0.5~0.9g/cm3之间。实验发现天然棉短绒吸水的弱点比较突出,吸水率受体积密度的影响,最小吸水率在43%左右。使用10#硅油表面疏水处理后,吸油倍率变化不明显,吸水率大幅下降。以吸水率10%为参考值,棉短绒纤维最佳疏水剂增重率范围在0.26~0.40g/dm~2之间。  相似文献   

13.
回收再利用是最有效的处理废旧高分子材料的方法,既能减少高分子材料对自然环境的危害,又能达到节约成本,变废为宝的目的.借助自制的熔体微分电纺装置,以回收聚丙烯(PP)无纺布为原材料,分别对酸处理后的回收PP无纺布粉料以及添加质量分数10%的不同增塑剂(硬脂酸钠、乙酰基柠檬酸三丁酯(ATBC)、己二酸二辛酯(DOA))的共混物料进行纺丝,在300℃下制备纳米纤维膜.探究回收PP无纺布纺丝的最佳降解时间以及添加不同增塑剂种类对电纺回收PP无纺布纳米纤维形貌、吸油性能及重复使用性能的影响.研究表明,加入增塑剂ATBC效果最佳.当纺丝电压40 kV,纺丝距离70 mm,纺丝温度300℃,ATBC质量分数为10%时制备的纤维直径达到最细为1.13μm.纤维膜吸油倍率为115.4 g/g,保油倍率为70.3g/g,分别为初始市售PP无纺布的4倍和3倍,且具有良好的重复使用性能.  相似文献   

14.
回收再利用是最有效的处理废旧高分子材料的方法,既能减少高分子材料对自然环境的危害,又能达到节约成本,变废为宝的目的。借助自制的熔体微分电纺装置,以回收聚丙烯(PP)无纺布为原材料,分别对酸处理后的回收PP无纺布粉料以及添加质量分数10%的不同增塑剂(硬脂酸钠、乙酰基柠檬酸三丁酯(ATBC)、己二酸二辛酯(DOA))的共混物料进行纺丝,在300℃下制备纳米纤维膜。探究回收PP无纺布纺丝的最佳降解时间以及添加不同增塑剂种类对电纺回收PP无纺布纳米纤维形貌、吸油性能及重复使用性能的影响。研究表明,加入增塑剂ATBC效果最佳。当纺丝电压40 kV,纺丝距离70 mm,纺丝温度300℃,ATBC质量分数为10%时制备的纤维直径达到最细为1.13μm。纤维膜吸油倍率为115.4 g/g,保油倍率为70.3g/g,分别为初始市售PP无纺布的4倍和3倍,且具有良好的重复使用性能。  相似文献   

15.
李旭  汪子孺  杨莉  张振东  张友婷  杜毅帆 《材料导报》2018,32(2):219-222, 227
利用多巴胺的自聚合作用使Fe_3O_4纳米粒子固载于稻糠表面,进而采用十八胺进行样品表面疏水改性,制备得到稻糠基新型磁性疏水吸油材料。利用扫描电子显微镜、傅里叶变换红外光谱、X射线衍射、磁滞回线和接触角测定等技术对制备的样品进行了表征。实验结果表明,多巴胺改性成功实现了Fe_3O_4纳米粒子在稻糠表面的固载,所制得的稻糠基吸油材料具有较好的磁性,其磁饱和强度达39.6emu/g,样品的接触角达135°,具有高疏水性。在对三氯甲烷等七种油性物质的吸油实验中发现,稻糠基新型磁性疏水吸油材料的最高吸油量可达自身质量的6.83倍,且样品的适用范围广、重复利用率高。  相似文献   

16.
以硬脂酸为疏水改性剂,将其与Fe_(3)O_(4)纳米颗粒和市售CaCO_(3)共混,分别以不同的原料质量比,制备疏水磁性碳酸钙HMC-1和HMC-2,并将HMC-2负载在PU海绵上用以提高其实用性能。采用X射线粉末衍射仪、红外光谱仪、差示扫描量热仪、接触角/表界面张力测量仪对合成样品的物相、表面有机官能团、热稳定性及疏水性能进行系列表征分析。结果表明,HMC-2比HMC-1,具有更稳定的疏水性能,除油前后水接触角基本保持不变,约为150°,除油后该材料没有出现类似HMC-1的铁渗出现象。将HMC-2负载在PU海绵上后,改性PU海绵在3 s内可去除98%的油,重复吸油20次仍能达到95%以上的除油率,吸油倍率(吸附油质量/吸附剂质量)大于100。  相似文献   

17.
利用多巴胺的自聚合作用使Fe3O4纳米粒子固载于稻糠表面,进而采用十八胺进行样品表面疏水改性,制备得到稻糠基新型磁性疏水吸油材料.利用扫描电子显微镜、傅里叶变换红外光谱、X射线衍射、磁滞回线和接触角测定等技术对制备的样品进行了表征.实验结果表明,多巴胺改性成功实现了Fe3O4纳米粒子在稻糠表面的固载,所制得的稻糠基吸油材料具有较好的磁性,其磁饱和强度达39.6 emu/g,样品的接触角达135°,具有高疏水性.在对三氯甲烷等七种油性物质的吸油实验中发现,稻糠基新型磁性疏水吸油材料的最高吸油量可达自身质量的6.83倍,且样品的适用范围广、重复利用率高.  相似文献   

18.
以聚酯纤维编织管为支撑体,聚偏氟乙烯(PVDF)为成纤聚合物,石墨烯(GE)为掺杂剂,采用静电纺丝技术制备增强型管状PVDF/GE纳米纤维膜,通过扫描电子显微镜(SEM)、接触角(CA)滴定仪和孔径分布仪等对其结构进行了分析和讨论,研究了GE含量对管状PVDF纳米纤维膜的结构及其对油水混合物分离性能的影响。结果表明,掺杂GE可显著增强纳米纤维膜的疏水性,其掺杂量为0.1%(质量分数)时,纳米纤维膜水接触角可达147.6°,表现出优异的疏水性能,同时煤油通量高达20367 L/(m~2·h)。油水分离实验表明,聚酯纤维编织管赋予纳米纤维膜良好的拉伸及抗压性能,使其在负压下可实现连续油水分离,且油(煤油)/水分离效果优异,分离效率可达99%以上。膜每运行一个周期后,用无水乙醇清洗膜表面,循环使用10次后分离效率仍可达96%以上。  相似文献   

19.
为了应对日益频发的溢油事故,实现含油水体的净化,通过高内相Pickering乳液模板法制备了FeNi2O4掺杂的甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料。采用FTIR、SEM、TGA、VSM、接触角测量仪、静态压汞仪、万能试验机等对材料结构与性能进行表征与分析。结果表明,材料具有三维分级多孔结构,孔径主要分布于3 μm及6~14 μm且大孔孔径可调节。材料热稳定性好,初始热分解温度最高达300℃。FeNi2O4纳米粒子的引入不仅提升了乳液稳定性,也赋予材料磁响应性。材料具有良好的疏水亲油性,水接触角达151°、滚动角为5°、油接触角为0°,吸油速率快,并具有良好的重复利用性和优异的油水吸附选择性,对多种油品及有机溶剂的饱和吸附倍率达40.80~93.08 g·g?1,且保油率均在90%以上。探究了材料的孔结构调控,发现,改变乳液的内相比可以调节材料的大孔分布、孔隙率、密度、比表面积、吸油倍率和力学性能。综上说明:超疏水FeNi2O4/甲基丙烯酸乙烯酯-二乙烯苯共聚物多孔材料可以高效分离水中油污,对水体环境的治理与净化具有现实意义。   相似文献   

20.
利用1H,1H,2H,2H-全氟辛基三氯硅烷对SiO_2纳米粒子进行表面改性,制备得到氟硅改性SiO_2纳米粒子(M-SiO_2),并将其与聚对苯二甲酸乙二酯(PET)共混后溶于六氟异丙醇(HFIP)溶剂中进行静电纺丝。采用接触角测量仪、扫描电镜和X射线光电子能谱研究了M-SiO_2/PET电纺膜的疏水性能、表面形貌以及化学组成。结果表明,静电纺丝法制备的M-SiO_2/PET共混电纺膜对水的接触角可高达155.2°,并且对水的滞后角仅为3.4°,即具有超疏水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号