首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
We studied the crystallization behaviors of bio‐based BDIS polyamides synthesized from the following biomass monomers: 1,4‐butanediamine (BD), 1,10‐decanediamine (DD), itaconic acid (IA), and sebacic acid (SA). Isothermal crystallization, melting behavior, and nonisothermal crystallization of BDIS polyamides were investigated by differential scanning calorimetry (DSC). The Avrami equation was used to describe the isothermal crystallization of BDIS polyamides. The modified Avrami equation, the Ozawa equation, the modified Ozawa equation, and an equation combining the Avrami and Ozawa equations were used to describe the nonisothermal crystallization. The equilibrium melting point temperature of BDIS polyamide was determined to be 163.0°C. The Avrami exponent n was found to be in the range of 2.21–2.79 for isothermal crystallization and 4.10–5.52 for nonisothermal crystallization. POLYM. ENG. SCI., 56:829–836, 2016. © 2016 Society of Plastics Engineers  相似文献   

2.
Nylon 10 12, a newly industrialized engineering plastic, shows a double‐melting phenomenon during melting. Partial melts were obtained when the sample was heated to the temperature between the two melting peaks. A differential scanning calorimeter was used to monitor the energies of the isothermal and nonisothermal crystallization from the partially melted samples. During isothermal crystallization, relative crystallinity develops with a time dependence described by the Avrami equation, with the exponent n = 1.0. For nonisothermal studies, kinetics treatments based on the Avrami and Ozawa equations are presented to describe the crystallization process. It was found that the two treatments can describe the nonisothermal crystallization from the partially melted samples. The derived Avrami and Ozawa exponents are all about 1.0, which means that the partially melted samples crystallize by one‐dimensional growth, which may cause thickening of the lamellae. We calculated the crystallization activation energies for isothermal and nonisothermal crystallization from the partially melted samples. It was found that the activation energy determined by the Kissinger method was not rational, which may be attributed to the free‐nucleation process for nonisothermal crystallization from partially melted samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1311–1319, 2003  相似文献   

3.
Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen–Hoffman equation are ς = 10.68 erg/cm2 and ςe = 110.62 erg/cm2; and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-11. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be −394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2371–2380, 1998  相似文献   

4.
To increase the glass transition temperature (Tg) of poly(aryl ether ketone), and to decrease the melting temperature (Tm) and temperature of processing, a series of novel poly(aryl ether ketone)s with different contents of 2,7‐naphthalene moieties (PANEK) was synthesized. We focused on the influence of the naphthalene contents to the copolymer's crystallization. The crystallization kinetics of the copolymers was studied isothermally and nonisothermally by differential scanning calorimetry. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the crystallization. The study results of the crystallization of PANEK at cooling/heating rates ranging from 5 to 60°C/min under nonisothermal conditions are also reported. Both the Avrami equation and the modified Avrami–Ozawa equation were used to describe the nonisothermal crystallization kinetics of PANEK. The results show that the increase in the crystallization temperature and the content of 2,7‐naphthalene moieties will make the crystallization rate decrease, while the nucleation mechanism and the crystal growth of PANEK are not influenced by the increasing of the content of 2,7‐naphthalene moieties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2527–2536, 2006  相似文献   

5.
The isothermal and nonisothermal crystallization behavior of Nylon 12 was investigated using differential scanning calorimetry (DSC). An Avrami analysis was used to study the isothermal crystallization kinetics of Nylon 12, the Avrami exponent (n) determined and its relevance to crystal growth discussed and an activation energy for the process evaluated using an Arrhenius type expression. The Lauritzen and Hoffman analysis was used to examine the spherulitic growth process of the primary crystallization stage of Nylon 12. The surface‐free energy and work of chain folding were calculated using a procedure reported by Hoffmann and the work of chain folding per molecular fold (σ) and chain stiffness of Nylon 12 (q) was calculated and compared to values reported for Nylons 6,6 and 11. The Jeziorny modification of the Avrami analysis, Cazé and Chuah average Avrami parameter methods and Ozawa equation were used in an attempt to model the nonisothermal crystallization kinetics of Nylon 12. A combined Avrami and Ozawa treatment, described by Liu, was used to more accurately model the nonisothermal crystallization kinetics of Nylon 12. The activation energy for nonisothermal crystallization processes was determined using the Kissinger method for Nylon 12 and compared with values reported previously for Nylon 6,6 and Nylon 11. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Crystallization kinetics of MC nylon (PA6) and polyazomethine (PAM)/MC nylon (PAM/PA6) both have been isothermally and nonisothermally investigated by different scanning calorimetry (DSC). Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The Avrami equation and Mo's modified method can describe the primary stage of isothermal and nonisothermal crystallization of PA6 and PAM/PA6 composite, respectively. In the isothermal crystallization process, the values of the Avrami exponent are obtained, which range from 1.70 to 3.28, indicating an average contribution of simultaneous occurrence of various types of nucleation and growth of crystallization. The equilibrium melting point of PA6 is enhanced with the addition of a small amount of rigid rod polymer chains (PAM). In the nonisothermal crystallization process, we obtain a convenient method to analyze the nonisothermal crystallization kinetics of PA6 and PAM/PA6 composites by using Mo's method combined with the Avrami and Ozawa equations. In the meanwhile, the activation energies are determined to be ?306.62 and ?414.81 KJ/mol for PA6 and PAM/PA6 (5 wt %) composite in nonisothermal crystallization process from the Kissinger method. Analyzing the crystallization half‐time of isothermal and nonisothermal conditions, the over rate of crystallization is increased significantly in samples with a small content of PAM, which seems to result from the increased nucleation density due to the presence of PAM rigid rod chain polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2844–2855, 2004  相似文献   

7.
This article studied the crystallization behaviors of a newly industrialized polyamide, Nylon 10 12, under isothermal and nonisothermal conditions from the melt. A differential scanning calorimeter (DSC) was used to monitor the energetics of the crystallization process. During isothermal crystallization, relative crystallinity develops in accordance with the time dependence described by the Avrami equation with the exponent n=2.0. For nonisothermal studies, several different analysis methods were used to describe the crystallization process. The experimental results show that the Ozawa approach cannot adequately describe the nonisothermal crystallization kinetics. However, Avrami treatment for nonisothermal crystallization is able to describe the system very well. The calculated activation energy is 264.4 KJ/mol for isothermal crystallization by Arrhenius form and 235.5 KJ/mol for nonisothermal crystallization by Kissinger method.  相似文献   

8.
Poly(?‐caprolactone) (PCL)/layered double hydroxide (LDH) nanocomposites were prepared successfully via simple solution intercalation. The nonisothermal melt crystallization kinetics of neat PCL and its LDH nanocomposites was investigated with the Ozawa, Avrami, and combined Avrami–Ozawa methods. The Ozawa method failed to describe the crystallization kinetics of the studied systems. The Avrami method was found to be useful for describing the nonisothermal crystallization behavior, but the parameters in this method do not have explicit meaning for nonisothermal crystallization. The combined Avrami–Ozawa method explained the nonisothermal crystallization behavior of PCL and its LDH nanocomposites effectively. The kinetic results and polarized optical microscopy observations indicated that the addition of LDH could affect the mechanism of nucleation and growth of the PCL matrix. The Takhor model was used to analyze the activation energies of nonisothermal crystallization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Differential scanning calorimetry (DSC) was used to investigate the isothermal and nonisothermal crystallization kinetics of polyamide11 (PA11)/multiwalled carbon nanotube (MWNTs) composites. The Avrami equation was used for describing the isothermal crystallization behavior of neat PA11 and its nanocomposites. For nonisothermal studies, the Avrami model, the Ozawa model, and the method combining the Avrami and Ozawa theories were employed. It was found that the Avrami exponent n decreased with the addition of MWNTs during the isothermal crystallization, indicating that the MWNTs accelerated the crystallization process as nucleating agent. The kinetic analysis of nonisothermal crystallization process showed that the presence of carbon nanotubes hindered the mobility of polymer chain segments and dominated the nonisothermal crystallization process. The MWNTs played two competing roles on the crystallization of PA11 nanocomposites: on the one hand, the MWNTs serve as heterogeneous nucleating agent promoting the crystallization process of PA11; on the other hand, the MWNTs hinder the mobility of the polymer chains thus retarding the crystal growth process of PA11. The activation energies of PA11/MWNTs composites for the isothermal and nonisothermal crystallization are lower than neat PA11. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

10.
The kinetics of the isothermal and nonisothermal cold crystallization of syndiotactic polystyrene (s‐PS) were characterized with differential scanning calorimetry. A Johnson–Mehl–Avrami analysis of the isothermal experiments indicated that the cold crystallization of s‐PS at a constant temperature followed a diffusion‐controlled growth mode with a decreasing nucleation rate. Furthermore, the slow nucleation rate was the controlling step of the entire kinetic process. For nonisothermal cold‐crystallization kinetics, we used a simple model based on a combination of the well‐known Avrami and Ozawa models. The analysis revealed that, unlike for melt crystallization, the Avrami and Ozawa exponents were not equal. The activation energies for the isothermal and nonisothermal cold crystallizations of s‐PS were 792.0 and 148.62 kJ mol?1, respectively, indicating that the smaller motion units in cold crystallization had a weaker temperature dependence than those in melt crystallization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3464–3470, 2003  相似文献   

11.
Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) (PEKEKK) were investigated by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could only describe the primary stage of nonisothermal crystallization kinetics of PEKEKK. Also, the Ozawa equation could not describe its nonisothermal crystallization behavior. A convenient and reasonable kinetic approach was used to describe the nonisothermal crystallization behavior. The crystallization activation energy were estimated to be −264 and 370 KJ/mol for nonisothermal melt and cold crystallization by the Kissinger method. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2865–2871, 2000  相似文献   

12.
This article investigated the crystallization kinetics, melting behavior, and morphologies of poly(butylene succinate)(PBS) and its segmented copolyester poly(butylene succinate)‐block‐poly(propylene glycol)(PBSP) by means of differential scanning calorimetry, polarized light microscopy, and wide angle X‐ray diffraction. Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the Avrami equation modified by Jeziorny, and the model combining Avrami equation and Ozawa equation were employed. The results showed that the introduction of poly(propylene glycol) soft segment led to suppression of crystallization of PBS hard segment. The melting behavior of the isothermally and nonisothermally crystallized samples was also studied. Results showed that the isothermally crystallized samples exhibited two melting endotherms, whereas only one melting endotherm was shown after nonisothermal crystallization. The spherulitic morphology of PBSP and wide angle X‐ray diffraction showed that the polyether segments were excluded from the crystals and resided in between crystalline PBS lamellae and mixed with amorphous PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Nonisothermal and isothermal crystallization kinetics of biodegradable poly(ethylene succinate) (PES) from the amorphous state were studied by differential scanning calorimetry (DSC). For the nonisothermal crystallization, there were two crystallization exotherms upon heating from the amorphous state. One major crystallization exotherm located at low temperature corresponded to the real cold crystallization of PES, while the other minor one located at high temperature may correspond to the melt-recrystallization of the unstable crystals formed during the nonisothermal crystallization earlier. Several methods, such as Avrami equation, Tobin equation and Ozawa equation, were applied to describe the nonisothermal crystallization process of PES. Meanwhile, Avrami equation was also employed to study the isothermal crystallization of PES from the amorphous state. Similar to the nonisothermal crystallization the minor crystallization exotherm was also found in the DSC trace upon heating to the melt after the isothermal cold crystallization finished completely, and was attributed to the melt-recrystallization of the unstable crystals formed during the isothermal cold crystallization. Temperature modulated differential scanning calorimetry (TMDSC) was used in this work to investigate the origin of the minor crystallization exotherm located at high temperature, and the TMDSC experiments gave a direct evidence that the origin of the minor crystallization exotherm was from the melt-recrystallization of the originally existed unstable crystals formed through previous crystallization.  相似文献   

14.
Crystallization kinetics of polymer/clay systems was the subject of numerous investigations, but still there are some ambiguities in understanding thermal behavior of such systems under isothermal and nonisothermal circumstances. In this work, isothermal rheokinetic and nonisothermal calorimetric analyses are combined to demonstrate crystallization kinetics of polyamide6/nanoclay (PA6/NC) nanocomposites. As the main outcome of this work, we detected different regimes of crystallization and compared them by both isothermal dynamic rheometry and nonisothermal differential scanning calorimetry (DSC), which has not been simultaneously addressed yet. A novel analysis, somehow different from the common ones, is used to convert the storage modulus data to crystallinity values leading to more reasonable Avrami parameters in isothermal crystallization. It was found based on isothermal rheokinetic studies that increase of NC content and shear rate are responsible for erratic behavior of Avrami exponent and crystallization rates. Optimistically, however, isothermal crystallization by rheometer was confirmed by DSC. Nonisothermal calorimetric evaluations suggested an accelerated crystallization of PA6 upon increasing NC content and cooling rate. The crystallization behavior was quantified applying Ozawa (r2 between 0.070 and 0.975), and combinatorial Avrami–Ozawa (r2 between 0.984 and 0.998) models, where the latter appeared more appropriate for demonstration of nonisothermal crystallization of PA6/NC nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46364.  相似文献   

15.
16.
17.
An investigation was carried out on the crystallization behavior of p‐dioxanone polymers using differential scanning calorimetry (DSC). Kinetic analyses were performed on data collected primarily during isothermal crystallization. Isothermal data were treated within the framework of the classical Avrami equation. Using this approach, both the Avrami exponent, n, and the crystallization half‐time, t1/2, were evaluated and their implications are discussed for each system studied. It is shown that a small change in the polymer's composition greatly affects the crystallization kinetics, as well as the crystallizability of the materials. Additionally, nonisothermal crystallization under controlled heating and cooling rates was explored. In the case of cooling from the melt, the Ozawa theory and the recently proposed Calculus method were employed to describe the nonisothermal crystallization kinetics. In view of our results, the validity of these two estimation techniques for determining important kinetic and morphological parameters is also discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 742–759, 2001  相似文献   

18.
Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.  相似文献   

19.
Poly(ethylene terephthalate) (PET)/Barite nanocomposites were prepared by direct melt compounding. The nonisothermal melt crystallization kinetics of pure PET and PET/Barite nanocomposites, containing unmodified Barite and surface‐modified Barite (SABarite), was investigated by differential scanning calorimetry (DSC) under different cooling rates. With the addition of barite nanoparticles, the crystallization peak became wider and shifted to higher temperature and the crystallization rate increased. Several analysis methods were used to describe the nonisothermal crystallization behavior of pure PET and its nanocomposites. The Jeziorny modification of the Avrami analysis was only valid for describing the early stage of crystallization but was not able to describe the later stage of PET crystallization. Also, the Ozawa method failed to describe the nonisothermal crystallization behavior of PET. A combined Avrami and Ozawa equation, developed by Liu, was used to more accurately model the nonisothermal crystallization kinetics of PET. The crystallization activation energies calculated by Kissinger, Takhor, and Augis‐Bennett models were comparable. The results reveal that the different interfacial interactions between matrix and nanoparticles are responsible for the disparate effect on the crystallization ability of PET. POLYM. COMPOS., 31:1504–1514, 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
The crystllization kinetics of anionic-prepared nylon6-poly(oxypropylene) 1000-nylon 6 (NPN) block copolymers containing 1.20 to 8.76 wt% poly(oxypropylene)(POP) were studied. The thermograms of isothermal and nonisothermal differential scanning calorimetry of NPN block copolymers obtained were used for the study. The Avrami equation was used to analyze the isothermal crystallization of NPN nylon block copolymers. The Avrami exponent n obtained in the temperature range of 180 to 200 °C was 2.0 to 2.5. It was not similar to that for nylon 6 reported in literature. The activation energies of crystallization for the nylon block copolymers were smaller than that of nylon 6, and showed a minimum with POP content. The equilibrium melting point increased as the POP content decreased. For the nylon block copolymers with lower POP content, the slopes of Tc vs. Tm plots were higher than the values reported elsewhere. The Ozawa plot was used to analyze the data of nonisothermal crystallization. The obvious curvature in the plot indicated that the Ozawa model could not fit our system well, and there was an abrupt change of the slope in the Ozawa plot at a critical cooling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号