首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The electrical and thermal properties with respect to the crystallization in \(\hbox {V}_{2}\hbox {O}_{5}\) thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near \(250\,{^{\circ }}\hbox {C}\), and Ohmic behavior was observed above \(380\,{^{\circ }}\hbox {C}\). This result was due to the metal–insulator transition induced by lattice distortion in the crystalline film, for which \(T_{\mathrm{c}}\) was \(260\,{^{\circ }}\hbox {C}\). \(T_{\mathrm{c}}\) of the film decreased from 260 \({^{\circ }}\hbox {C}\) to \(230\,{^{\circ }}\hbox {C}\) with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was \(1.67\times 10^{-7}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\) according to the nanosecond thermoreflectance measurements.  相似文献   

2.
Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba (Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between \(20\,{^{\circ }}\hbox {C}\) and \(45\,{^{\circ }}\hbox {C}\) were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 \(\hbox {W}\cdot \,\hbox {s}^{1/2}\cdot \,\hbox {m}^{-2}\cdot \,\hbox {K}^{-1}\) to 378 \(\hbox {W}\cdot \,\hbox {s}^{1/2}\cdot \,\hbox {m}^{-2}\cdot \,\hbox {K}^{-1}\) as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between \(20\,{^{\circ }}\hbox {C}\) and \(45\,{^{\circ }}\hbox {C}\).  相似文献   

3.
CETIAT’s calibration laboratory, accredited by COFRAC, is a secondary thermometry laboratory. It uses overflow and stirred calibration baths \((\hbox {from} -\,80\,{^{\circ }}\hbox {C} \hbox { up } \hbox { to } +\,215\,{^{\circ }}\hbox {C})\), dry blocks and furnaces \((\hbox {from } +\,100\,{^{\circ }}\hbox {C} \hbox { up } \hbox { to } +\,1050\,{^{\circ }}\hbox {C})\) and thermostatic chambers \((\hbox {from } -\,30\,{^{\circ }}\hbox {C} \hbox { up } \hbox { to } +\,160\,{^{\circ }}\hbox {C})\). Typical calibration uncertainties that can be reached for platinum resistance thermometers in a thermostatic bath are between \(0.03\,{^{\circ }}\hbox {C}\) and \(0.06\,{^{\circ }}\hbox {C}\). In order to improve its calibration capabilities, CETIAT is working on the implementation of a gas-controlled heat pipe (GCHP) temperature generator, used for industrial sensor calibrations. This article presents the results obtained during the characterization of water GCHP for industrial applications. This is a new approach to the use of a heat pipe as a temperature generator for industrial sensor calibrations. The objective of this work is to improve measurement uncertainties and daily productivity. Indeed, as has been shown in many studies (Dunn and Reay in Heat Pipes, Pergamon Press, Oxford, 1976; Merlone et al. 2012), the temperature of the system is pressure dependent and the response time, in temperature, follows the pressure accordingly. Thanks to this generator, it is possible to perform faster calibrations with smaller uncertainties. In collaboration with INRiM, the GCHP developed at CETIAT works with water and covers a temperature range from \(+\,30\,{^{\circ }}\hbox {C}\) up to \(+\,150\,{^{\circ }}\hbox {C}\). This device includes some improvements such as a removable cover, which allows us to have different sets of thermometric wells adjustable according to the probe to be calibrated, and a pressure controller based on a temperature sensor. This article presents the metrological characterization in terms of homogeneity and stability in temperature. A rough investigation of the response time of the system is also presented in order to evaluate the time for reaching thermal equilibrium. The results obtained in this study concern stability and thermal homogeneity. The homogeneity on 200 mm is better than 5 mK and with a calibration uncertainty reduced by a factor of three.  相似文献   

4.
This study describes the temperature and heat flow rate calibrations of a Calvet calorimeter (SETARAM, BT2.15) in the temperature range of 0–190 \({^{\circ }}\hbox {C}\). Temperature calibration is carried out using three reference materials, namely water, gallium, and indium, as specified in the International Temperature Scale of 1990 (ITS-90). The sample temperature of the Calvet calorimeter is corrected by the obtained mean value, \(-0.489 \,{^{\circ }}\hbox {C}\), of the measured extrapolated peak onset temperature (\(T_{e})\) when the heating rate (\(\upbeta )\) is zero (\(\Delta T_\mathrm{corr }(\upbeta ~=~0\))). The heat flow rate is calibrated using a reference material with a known heat capacity, namely SRM 720 \(\alpha \)-\(\hbox {Al}_{2}\hbox {O}_{3}\) (synthetic sapphire), which is traceable to the National Institute of Standards and Technology. From the heat flow rate measurements of the blank baseline and SRM 720, the proportional calibration factor, \(\hbox {K}_{\Phi }\), in the 0–190\( \,{^{\circ }}\hbox {C}\) temperature range was determined. The specific heat capacity of copper was measured with the obtained calibration values, and the measured data show consistency with the reference value.  相似文献   

5.
Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) (100 and \(210^{\circ }\hbox {F})\) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) with average absolute deviations of 0.39 and \(0.72\hbox { mm}^{2}/\hbox {s}\), respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20 \(^{\circ }\hbox {C}\) to 150 \(^{\circ }\hbox {C}\) and viscosities from 0.14\(\hbox { mm}^{2}/\hbox {s}\) to 343.64\(\hbox { mm}^{2}/\hbox {s}\). The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of \(0.248\hbox { mm}^{2}/\hbox {s}\) and \(\hbox {R}^{2}\) of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with \(R^{2}\) as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.  相似文献   

6.
Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the \(\hbox {LiNO}_{3}\)\(\hbox {NaNO}_{3}\)\(\hbox {KNO}_{3}\)\(\hbox {Ca}(\hbox {NO}_{3})_{2}\) system is determined by conformal ionic solution theory according to the solid–liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is \(93.17\,{^{\circ }}\hbox {C}\), which is close to the experimental value of \(93.22\,{^{\circ }}\hbox {C}\) obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches \(50\,{^{\circ }}\hbox {C}\), and the degree of melting increases with temperature. The mixture is completely melted at \(\hbox {130}\,{^{\circ }}\hbox {C}\). The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.  相似文献   

7.
Onsite thermometer calibration with temperature scale transfer technology based on fixed points can effectively improve the level of industrial temperature measurement and calibration. The present work performs an onsite calibration of a precision industrial platinum resistance thermometer near room temperature. The calibration is based on a series of small-size eutectic points, including Ga–In (\(15.7 \,{^{\circ }}\hbox {C}\)), Ga–Sn (\(20.5 \,{^{\circ }} \hbox {C}\)), Ga–Zn (\(25.2 \,{^{\circ }} \hbox {C}\)), and a Ga fixed point (\(29.7 \,{^{\circ }} \hbox {C}\)), developed in a portable multi-point automatic realization apparatus. The temperature plateaus of the Ga–In, Ga–Sn, and Ga–Zn eutectic points and the Ga fixed point last for longer than 2 h, and their reproducibility was better than 5 mK. The device is suitable for calibrating non-detachable temperature sensors in advanced environmental laboratories and industrial fields.  相似文献   

8.
The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil (Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about \(2.14\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\). A transient thermal probe method was applied to measure the thermal conductivity (\(\lambda \)) over a full range of the degree of saturation \((S_{\mathrm{r}})\), at two porosities (n) of 0.44 and 0.50, and at room temperature of about \(25\,^{\circ }\hbox {C}\). The \(\lambda \) data obtained were consistent between tests and showed an increasing trend with increasing \(S_{\mathrm{r}}\) and decreasing n. At full saturation (\(S_{\mathrm{r}}=1\)), a nearly quintuple \(\lambda \) increase was observed with respect to full dryness (\(S_{\mathrm{r}}=0\)). In general, the measured data closely followed the natural trend of \(\lambda \) versus \(S_{\mathrm{r}}\) exhibited by published data at room temperature for other unsaturated soils and sands. The measured \(\lambda \) data had an average root-mean-squared error (RMSE) of \(0.007\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) and \(0.008\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level \((\hbox {RSDM}_{0.95})\) of 2.21 % and 2.72  % for n of 0.50 and 0.44, respectively.  相似文献   

9.
At VSL a humidity generator was designed and constructed in the early 1990s. This generator was of the re-circulating-single-pressure type. Over the years, the generator has been thoroughly revised and several critical components have been replaced. Among others the pre-saturator and the change from re-circulation to single-pass mode. Validating experiments showed that the range of the new setup could be extended from \(70\,{^{\circ }}\hbox {C}\) to \(95\,{^{\circ }}\hbox {C}\) dew-point temperature, and the last modification allows an uncertainty of \(0.048\,{^{\circ }}\hbox {C}\) (k = 2) at the maximum temperature. In 2009 the setup was used in the Euramet-T-K8 humidity intercomparison at temperatures up to \(95\,{^{\circ }}\hbox {C}\). In the period from 2003 to 2015, four state-of-the-art chilled mirror hygrometers were regularly calibrated with the generator. One of these was also calibrated with the primary dew-point standards of several other European National Metrology Institutes, which made it possible to link the VSL generator to the generators used in these institutes. An analysis of the results of these calibrations shows an agreement in calibration capabilities within \(0.01\,{^{\circ }}\hbox {C}\) with PTB and NPL.  相似文献   

10.
In the present work, pristine and cetyl trimethyl ammonium bromide (CTAB)-coated ferric oxide nanoparticles \((\hbox {CTAB@Fe}_{2}\hbox {O}_{3} \hbox { NPs})\) were synthesized and studied as enzyme mimics. The w/w ratio of \(\hbox {Fe}_{2}\hbox {O}_{3}\) to CTAB was varied as 1:1 and 1:2. Transmission electron microscopic analysis revealed that pristine NPs had an average size of 50 nm, whereas the presence of CTAB resulted in the formation of nanorods with length of 130 nm. BET studies confirmed enhancement of surface area on CTAB coating, which was maximum for w/w ratio 1:1. The synthesized pristine NPs and CTAB-coated NPs were evaluated for their peroxidase mimic activity using o-dianisidine dihydrochloride as substrate. Optimum pH, temperature, substrate and NPs concentration for the reaction were 1, \(25^{\circ }{\mathrm{C}}\), \(0.16~\hbox {mg}~\hbox {ml}^{-1}\) and \(1~\hbox {mg}~\hbox {ml}^{-1}\), respectively. Peroxidase mimic activity of \(\hbox {CTAB@Fe}_{2}\hbox {O}_{3}\hbox { NPs}\) (w/w 1:1) was higher than that of pristine NPs. However, further increase in CTAB coating (w/w 1:2) resulted in lowering of peroxidase mimic activity. Kinetic analysis was carried out at optimized conditions; maximum velocity (\(V_{\mathrm{max}})\) and Michaelis constant (\(K_{\mathrm{m}})\) value of \(\hbox {CTAB@Fe}_{2}\hbox {O}_{3}\hbox { NPs}\) at 1:1 w/w ratio were 7.69 mM and \(1.12~\upmu \hbox {mol}~\hbox {s}^{-1}\), respectively.  相似文献   

11.
The effect of thermal annealing in an inert atmosphere (argon) on the structural and thermochromic properties of \(\hbox {MoO}_{3}\) thin films was investigated. \(\hbox {MoO}_{3}\) thin films were deposited by thermal evaporation in vacuum of \(\hbox {MoO}_{3}\) powders. X-ray diffraction patterns of the films showed the presence of the monoclinic Magneli phase \(\hbox {Mo}_{9}\hbox {O}_{26}\) for annealing temperatures above \(250\,{^{\circ }}\hbox {C}\). Absorbance spectra of the films annealed in argon indicated that their thermochromic response increases with the annealing temperature in the analyzed range (23 \({^{\circ }}\hbox {C}\)–300 \({^{\circ }}\hbox {C}\)), a result opposite to the case of thermal annealings in air, for which case the thermochromic response shows a maximum value around 200 \({^{\circ }}\)C–225 \({^{\circ }}\)C and decreases for higher temperatures. These results are explained in terms of a higher density of oxygen vacancies formed upon thermal treatments in inert atmospheres.  相似文献   

12.
13.
The Russian national humidity standard of gases has been modernized in order to increase the number of reproducible quantities of humidity (relative humidity, dew/frost-point temperature, mole fraction) and to extend the humidity and operating temperature ranges. The basis of the standard comprises two humidity generators with operating temperature ranges from \(5\,^{\circ }\hbox {C}\) to \(90\,^{\circ }\hbox {C}\) and from \(-60\,^{\circ }\hbox {C}\) to \(15\,^{\circ }\hbox {C}\). The common working range (from \(5\,^{\circ }\hbox {C}\) to \(15\,^{\circ }\hbox {C}\)) allows comparison of the generators. The generators use the two-pressure method to generate humid gas defined in terms of the relative humidity (from 5 %rh to 98 %rh at temperatures from \(90\,^{\circ }\hbox {C}\) to \(-60\,^{\circ }\hbox {C}\)) and the one-pressure (or phase equilibrium) method to generate humid gas defined in terms of the vapor mole fraction (from 0.6 ppm to \(700\times 10^{3}\) ppm) and dew/frost-point temperature (from \(-79\,^{\circ }\hbox {C}\) to \(90\,^{\circ }\hbox {C}\)). The expanded uncertainty in the relative humidity is no more than 0.2 %rh, no more than 1.2 % in the vapor mole fraction, and no more than \(0.12\,^{\circ }\hbox {C}\) in the dew/frost-point temperature. The ordinary hygrometers are traceable to the national primary standard in accordance with the state hierarchical chain for measuring means of gas humidity. The state hierarchical chain consists of three branches for means of measurements: (a) mole fraction, (b) dew/frost-point temperature, and (c) relative humidity with each branch represented as the scheme: primary standard–secondary standard–working standard–ordinary hygrometer. Calibration and verification of working standards and ordinary hygrometers, and their traceability to the primary standard use methods of (i) direct measurements, (ii) direct comparison, or (iii) comparison with a comparator.  相似文献   

14.
The thermal conductivity data of 40 Canadian soils at dryness \((\lambda _{\mathrm{dry}})\) and at full saturation \((\lambda _{\mathrm{sat}})\) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\), was evaluated using a standard deviation (SD) formula. Among the mechanistic models applied to dry soils, the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by MaxRTCM \((\textit{SD} = \pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\), followed by de Vries and a series-parallel model (\(\hbox {S-}{\vert }{\vert }\)). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C–B) and Chen’s equation), the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by the C–B model \((\pm ~0.022\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\). Among the empirical equations, the top \(\lambda _{\mathrm{dry}}\) estimates were given by CDry-40 \((\pm ~0.021\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) and \(\pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) for18-coarse and 22-fine soils, respectively). In addition, \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\) models were applied to the \(\lambda _{\mathrm{sat}}\) database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest \(\lambda _{\mathrm{dry}}\) estimates for the 40 Canadian soils as well as the 21 soils. The best \(\lambda _{\mathrm{sat}}\) estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the \(\hbox {S-}{\vert }{\vert }\) model.  相似文献   

15.
The number of accredited laboratories in the field of calibration of temperature-controlled enclosures has been increasing in Turkey. One of the main criteria demonstrating the competence of a calibration laboratory is successful participation in interlaboratory comparisons. Therefore, TUBITAK UME Temperature Laboratory organized the first interlaboratory comparison on “Calibration of Temperature-Controlled Enclosures” in Turkey as a pilot laboratory between January and November, 2013. Forty accredited laboratories which provide routine calibration services to the industry in this field participated in the comparison. The standards used during the comparison was a climatic chamber for the measurements at \(-40\, {^{\circ }}\hbox {C},\,-20\, {^{\circ }}\hbox {C}, 40\, {^{\circ }}\hbox {C}\) and \(100\, {^{\circ }}\hbox {C}\) and an oven for the measurements at \(200\, {^{\circ }}\hbox {C}\). The protocol of the comparison was prepared considering guide EURAMET cg-20 and BS EN/IEC standards 600068-3-5 and 600068-3-11. During the comparison measurements, each participant had the liberty to choose the most convenient calibration points in terms of their accreditation scope among the values mentioned above and carried out on-site measurements at UME. The details and the results of this comparison are given in the paper. Determination of the statistical consistency of the results with the uncertainties given by the participants can be assessed by the method of \(E_{n}\) value assessment for each laboratory. \(E_{n}\) values for all measurement results based on the results of pilot and participating laboratories were calculated.  相似文献   

16.
Microstructure and composition are factors determining heat transfer in ZnO ceramic materials, which define the performance of the material after Joule heating, generated by electron transport. In this study, photothermal radiometry was applied to investigate the influence of the sintering temperature, ranging from \(800\,{^{\circ }}\hbox {C}\) to \(1300\,{^{\circ }}\hbox {C}\), by measuring the thermal diffusivity and thermal conductivity at room temperature, of commercial and sol–gel ZnO pellets. Our results show that the values of these thermal properties for both types of ZnO increase when the sintering temperature increases, displaying maximum energy dissipation at \(1200\,{^{\circ }}\hbox {C}\). Additionally, the role of the sintering temperature on the optical properties was also analyzed using diffuse reflectance spectroscopy, and from these data the optical band-gap was obtained.  相似文献   

17.
Alumina and alumina–zirconia mixed oxides were compared as supports to prepare nickel catalysts. The oxides were prepared by the sol–gel method using aluminum tri-sec-butoxide and zirconium (IV) propoxide as precursors, and its physicochemical properties were determined by BET, TGA, DTA, XRD, SEM and TEM. The catalysts of nickel were obtained by the impregnation of the supports with nickel nitrate (10 wt%) and were heat-treated at \(700{^{\circ }}\hbox {C}\). The specific area of the supports and catalysts decreased with the increase in the zirconia content in agreement with the crystalline phase formed. TEM micrographs of nickel catalysts revealed particles in the size range of 10–30 nm. The \(\hbox {Ni/Al}_{2}\hbox {O}_{3}\)\(\hbox {ZrO}_{2}\) catalysts were tested in the steam reforming reaction of ethanol (SRE) at \(500{^{\circ }}\hbox {C}\), and the obtained results suggest that the differences in catalytic activities depended on the content of \(\hbox {ZrO}_{2}\). The selectivity towards \(\hbox {H}_{2}\) was \({\sim }56\%\) for the named catalyst Ni–Al–0.25Zr.  相似文献   

18.
Industrial platinum resistance thermometer (IPRT) sensors or probes suffer from some instability on cycling over significant ranges of temperature and, specifically, from hysteresis in which the resistance tends to follow different paths for increasing temperatures compared with decreasing temperatures. The effect is well known, and cases of quite large hysteresis have been reported in the literature. Therefore, in establishing calibration and measurement capabilities for IPRT calibrations it is important to include an assessment of the performance which can be expected of a ‘typical good’ IPRT and to include this in the overall uncertainty which the laboratory can expect to achieve in such calibrations, even though the effect itself is outside the laboratory’s control. This paper presents results which have been obtained in cycling IPRT probes from four sources within various temperature ranges of current interest at NPL, between \(-196\,^{\circ }\hbox {C}\) and \(150\,^{\circ }\hbox {C}\), to see what levels of hysteresis may be expected. The cycles were carried out quite quickly in order to detect the hysteresis before it was mitigated by relaxation effects, but the time dependence was not itself studied. In most cases, hysteresis was \({<}0.0025\,^{\circ }\hbox {C}\) between \(0\,^{\circ }\hbox {C}\) and \(100\,^{\circ }\hbox {C}\), and \({<}0.0035\,^{\circ }\hbox {C}\) when the range extended down to \(-80\,^{\circ }\hbox {C}\) or up to \(150\,^{\circ }\hbox {C}\). Greater instability occurred when the sensors were cooled to \(-196\,^{\circ }\hbox {C}\).  相似文献   

19.
We report the effects of annealing in conjunction with \(\hbox {CdCl}_{2}\) treatment on the photovoltaic properties of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S thin film solar cells. CdTe layer is subjected to dry \(\hbox {CdCl}_{2}\) treatment by thermal evaporation method and subsequently, heat treated in air using a tube furnace from 400 to \(500{^{\circ }}\hbox {C}\). AFM and XRD results show improved grain size and crystallographic properties of the CdTe film with dry \(\hbox {CdCl}_{2}\) treatment. This recrystallization and grain growth of the CdTe layer upon \(\hbox {CdCl}_{2}\) treatment translates into improved photo-conversion efficiencies of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S cell. The results of dry \(\hbox {CdCl}_{2}\) treatment were compared with conventional wet \(\hbox {CdCl}_{2}\) treatment. Photo-conversion efficiency of 5.2% is achieved for dry \(\hbox {CdCl}_{2}\)-treated cells in comparison with 2.4% of wet-treated cell at heat treatment temperature of \(425{^{\circ }}\hbox {C}\).  相似文献   

20.
The Physikalisch-Technische Bundesanstalt determined the directional spectral emissivities of several widely used black coatings: Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black. These are and were often applied in different industrial and scientific applications. The measurements are taken angularly resolved over a range from \(10{^{\circ }}\) to \(70{^{\circ }}\). They cover the temperature range typical for the application of the respective coating and a wide wavelength range from \(4~\upmu \hbox {m}\) to \(100~\upmu \hbox {m}\). The respective directional total emissivities and hemispherical total emissivities are given as well. The measurements were taken under vacuum at the reduced background calibration facility to achieve low uncertainties and avoid atmospheric interferences. Additionally, some measurements were taken with the emissivity measurement setup in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号