首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
氯氧镁水泥具有放热量大、放热集中的特点.为了改善由放热量大引起的制品开裂、变形等缺点,本文采用水化热法,研究了内掺粉煤灰、硅灰和矿渣3种矿物掺合料对氯氧镁水泥水化历程的影响规律.研究结果表明,三者均能影响氯氧镁水泥的水化历程,延长水化时间,降低放热速率和总放热量,但三者影响效果不尽一致.当掺量为10%时,粉煤灰、硅灰和矿渣分别使镁水泥的诱导期延长了2%、6%和13%,第二最大放热速率分别降低了6%、16%和7%,3d水化放热量分别降低了9%、14%和6%;当掺量为30%时,粉煤灰和矿渣分别使镁水泥的诱导期延长了24%和45%,第二最大放热速率分别降低了29%和32%,3d水化放热量分别降低了27%和29%;三者对氯氧镁水泥水化历程的影响差异,与其矿物组成、比表面积、颗粒级配和形状等性质有关.实验结果为进一步寻找控制和改善氯氧镁水泥性能的合适外加剂提供了可靠的依据.  相似文献   

2.
改性硅酸盐水泥的水化动力学研究   总被引:2,自引:0,他引:2  
将磷铝酸盐水泥熟料掺入到硅酸盐水泥中制备改性水泥,从水化动力学的角度研究其水化情况,并与硅酸盐水泥的相应行为进行了对比.首先通过测定水化放热速率、新拌水泥浆体中的Ca2+和SiO44-离子浓度、电导率及pH值研究了改性硅酸盐水泥的水化历程,并求得了水化动力学方程.其次,测定了改性硅酸盐水泥的净浆与砂浆的强度,并用XRD等分析方法初步探讨论了改性水泥的水化机理.研究发现,改性硅酸盐水泥的水化历程与硅酸盐水泥相似,也经历初始期、诱导期、加速期、减速期和稳定期,但水化放热速率明显提高;在加速期,两者的水化反应均主要由自动催化反应控制,在减速期,均主要由扩散过程控制,但反应速率常数前者明显高于后者.无论是砂浆强度,还是净浆强度,前者也均高于后者,且凝结时间相对缩短.XRD图谱显示,前者的C3S/C2S衍射峰强度的降低率高于相应龄期的硅酸盐水泥.上述结果均意味着改性硅酸盐水泥的水化速度明显高于硅酸盐水泥;水化加速的机理为磷铝酸盐熟料水化吸收了水化浆体中OH-离子,使水化体系的OH-离子浓度减少,从而加速了C3S、C2S的水化反应.  相似文献   

3.
MgO-MgSO4-H2O胶凝体系水化动力学的研究   总被引:4,自引:0,他引:4  
采用微量热法测定了MgO-MgSO-H2O三元胶凝体系的水化放热速率;研究了该体系水化各阶段的动力学过程;求出相应的动力学反应参数,并据此提出了合理的水化历程和机理。该体系水化过程中的不同阶段受不同的过程控制,它们所适用的动力学公式及对应的动力学参数也各异,在不同的水化阶段所作的XRD和SEM检测初步证实了上述研究结果。  相似文献   

4.
应用恒温导热量热仪对矿渣水泥和波特兰水泥的水化动力学进行了研究。实验结果表明,水泥水化在不同反应阶段具有不同的反应机理,所适用的动力学公式及动力学参数亦不同。加速期由自动催化(auto catalytic)反应控制,减速期由化学反应和扩散过程双重控制,衰减期由扩散过程控制。矿渣水泥对温度的敏感性高于波特兰水泥,原因是矿渣玻璃相具有较高的表观活化能。提高温度(热激发)对矿渣水泥的水化更为有利。在研究中采用两种活性不同的矿渣,它们的活性之差别可以从水化动力学参数K、E与N(与反应机理有关的常数)反映出来。  相似文献   

5.
矿渣水泥水化动力学研究   总被引:9,自引:2,他引:7  
应用恒温导热量热仪对矿渣水泥和波特兰水泥的水化动力学进行了研究。实验结果表明,水泥水化在不同反应阶段具有不同的反应机理,所适用的动力学公式及动力学参数亦不同。加速期由自动催化反应控制,衰减期由扩散过程控制,减速期由化学反应和扩散过程双重控制。矿渣水泥对温度的敏感性高于波特兰水泥,原因在于矿渣玻璃相具有较高的表观反应活化能。提高温度(热激发)对矿渣水泥的水化更为有利。采用了两种活性不同的矿渣,它们的活性的差别可由水化动力学参数K、E与N反映出来。  相似文献   

6.
研究了M/P比值(重烧氧化镁与磷酸盐的质量比)对磷酸镁水泥水化历程的影响,采用水化热动力学结合水化产物、微观形貌变化探讨了M/P比值对磷酸镁水泥水化作用机理。结果表明:增大M/P比值,会显著降低水化时吸热峰及放热峰的峰值。根据磷酸镁水泥水化放热速率的变化特点,可将水化放热过程划分为KH_2PO_4水解期、MgO溶解期、Mg(H_2O)6~(2+)增长期、MgKPO_4·6H_2O增长加速期、MgKPO_4·6H_2O增长减速期以及稳定期6个阶段。Knudsen与Kondo的水化动力学公式对于磷酸镁水泥水化体系的最终放热量及半衰期预测以及水化动力学研究具有良好的适用性,拟合相关系数高达0.99以上。M/P比值由2:1增至6:1,最终放热量及半衰期呈逐渐减小的趋势。磷酸镁水泥的水化是由结晶成核过程直接进入扩散过程,改变M/P比值,主要会对Mg(H_2O)6~(2+)增长期、MgKPO_4·6H_2O增长减速期以及水化稳定期产生影响。在第Ⅰ~Ⅳ阶段,反应物浓度及游离水含量变化是影响水化行为的主要原因。在第Ⅴ、Ⅵ阶段,水化体系中剩余MgO产生的隔断作用及反应物浓度的变化共同决定了水化速率。  相似文献   

7.
水泥基材料的水化动力学模型   总被引:20,自引:0,他引:20  
阎培渝  郑峰 《硅酸盐学报》2006,34(5):555-559
介绍了水泥基材料的水化动力学模型.根据实验测定的水化放热数据,采用模型给出的积分和微分方程,对水泥基材料的水化反应中的3个基本过程即结晶成核与晶体生长(NG)、相边界反应(I)和扩散(D)进行了表征,得到反应速率常数K、反应级数n和表观活化能Ea等动力学参数以及各反应阶段的反应速率与反应度的关系.计算得到的各阶段的反应速率曲线能较好地分段模拟由量热实验得到的胶凝材料实际水化速率dα/dt曲线.观察3个阶段的相互关系,可对水泥基材料复杂的水化机理进行解释.水泥基材料的水化反应存在两种不同的历程:NG-I-D或NG-D.在水化初期NG是控制因素,随着水化程度提高,逐渐转由I或D控制反应.  相似文献   

8.
为研究混磨不同细度石灰石粉-粉煤灰对水泥基胶凝材料水化进程和早期力学性能的影响规律,本文采用等温量热法测定了不同细度复合胶凝体系在水化温度为20 ℃时的水化放热速率和放热量,根据Krstulovic-Dabic提出的水化动力学模型计算了复合胶凝体系水化反应各阶段的动力学参数。结果表明:增加石灰石粉和粉煤灰的细度可促进复合胶凝体系水化产物的结晶成核与晶体生长,缩短水化诱导期结束时间和达到最大放热速率时间,加速水泥的水化反应速率。石灰石粉和粉煤灰细化会缩短相边界反应过程时间,使复合胶凝体系在水化程度更高时发生反应控制机制转变。抗压强度试验表明增加细度可明显提高胶砂试件的早期强度,其后期强度保持稳定。  相似文献   

9.
为了拓展氯氧镁水泥(MOC)的使用范围,研究了缓凝剂(柠檬酸、硼酸、葡萄糖酸钠)对氯氧镁水泥凝结时间、抗压强度、电阻率、水化热和耐水性的影响,同时采用X射线衍射仪分析了氯氧镁水泥改性后的水化产物。结果表明,掺入缓凝剂会延长氯氧镁水泥的凝结时间,当缓凝剂掺量达到0.75%(质量分数,下同)时,各组试样的28 d抗压强度较空白组分别下降了19.3%、16.7%和20.2%。缓凝剂的掺入降低了水泥浆体电阻率速率曲线和内部温度曲线的峰值,推迟了水化放热速率曲线第二峰值出现时间,即降低了氯氧镁水泥的水化速率,改善了氯氧镁水泥放热集中的现象。缓凝剂能提高氯氧镁水泥的耐水性,当硼酸掺量为0.75%时,软化系数可达到0.79。  相似文献   

10.
何彦琪  蒋震  陈凯  游涛  谭勇波 《硅酸盐通报》2018,37(8):2531-2535
通过等温量热试验研究了掺入不同掺量和细度的石灰石粉时水泥水化的放热速率及放热量,分析其随时间的变化规律.同时对水化放热速率及放热量曲线进行动力学分析,通过计算拟合得到水泥-石灰石粉体系的KNG、KI、KD等水化动力学参数,分析石灰石粉掺量、细度对水泥水化动力学过程及其对C-S-H成核的影响,探究石粉加速水泥水化的关键因素.研究结果表明:石灰石粉加速了水泥早期水化,C-S-H成核效率随石粉掺量增大先增大后减小,10%掺量时最大,C-S-H成核效率随石灰石粉细度的增大而增大.水泥水化的NG过程随石粉掺量增大而逐渐延长,I过程随石灰石粉掺量增大而缩短.  相似文献   

11.
采用X射线衍射仪、扫描电子显微镜、Fourier变换红外光谱仪等研究了MgO-Al-C质材料水化前后的物相组成、微观结构及O-H键强弱的变化,探讨了MgO-Al-C质材料的水化机理.在此基础上,以板状刚玉取代部分电熔镁砂颗粒,以改善MgO-Al-C质材料的抗水化性能.结果表明:MgO-Al-C质材料除因加热过程中Al粉...  相似文献   

12.
研究了用于膨胀剂的CaO熟料早期水化放热过程及其在水泥浆体中的水化程度.结果表明,在CaO熟料-水体系中,CaO熟料水化放热过程与水泥熟料类似,分为表面水化加速期、诱导期、内部水化加速期和衰退期四个阶段.量化了该过程的时间节点.在水固比为0.35的CaO熟料-硅酸盐水泥浆体体系中,CaO熟料掺量4% ~8%时,CaO熟料在水泥浆体中水化24 h时的反应度约85.5%.这是氧化钙膨胀剂在混凝土中水化2 d后膨胀效能增加缓慢的主要原因.  相似文献   

13.
在选择环氧乙烷非催化水合反应的水合比时,仅从降低乙烯单耗的角度考虑是不完善的。更要从增效的角度,根据乙二醇和二乙二醇的市场价格及装置设计所允许的水合比变化区间,确定最适宜的水合比。利用Aspen Plus软件对一个非催化水合反应分离的流程进行了模拟,给出了确定最佳水合比的方法和示例。  相似文献   

14.
The kinetics of paste, bottle, and ball-mill hydration of 3CaO SiO2 and the effects of additions of electrolytes and alcohols were studied. Paste and bottle hydrations proceed through periods of induction, acceleration, and decay. If 3CaO SiO2 is hydrated in an excess of H2O, as in bottle hydration, the reaction rate is lower than that for paste hydration. The ball-mill hydration rate is much the highest and is controlled by the removal of the hydrate layer coating the 3CaO SiO2 particles. Electrolytes always accelerate and alcohols retard the reaction rate. Experimental results are discussed with reference to modern theories of the 3CaO SiO2 hydration mechanism.  相似文献   

15.
16.
丙烯醛水合工艺   总被引:3,自引:0,他引:3  
本文对以丙烯醛为原料,通过水合反应合成3-羟基丙醛的工艺进行了介绍。  相似文献   

17.
Results of following the quantities of free Ca(OH)2 and of tricalcium silicate (C3S) during the hydration of C3S, and also the influence of the presence of free CaO on this reaction are in accordance with the hypothesis of Stein & Stevels with regard to the hydration of C3S. at the first contact between C3S and water, a surface hydrate, invisible by electron microscope methods, is considered to be formed and to retard the reaction strongly. This hydrate is thought to change into one which retards the hydration reaction less and changes later into a third hydrate, tobermorite gel.  相似文献   

18.
The quaternary invariant point was reached in the CaO–GeO2–P2O5–H2O system by the hydration of germanium oxide carnotite. Complete reaction was achieved although the kinetics were very slow. Three products were identified by X-ray diffraction: calcium germanate hydrate, hydroxyapatite, and calcium hydroxide. Energy dispersive X-ray analyses established the compositions of the three phases present in the heterogeneous microstructure. Calcium germanate hydrate exhibited a fibrous habit and was present as large individual fibers as well as small thin fibers. The small fibers were intermixed with hydroxyapatite. The latter was observed to form feltlike assemblages. Stacked calcium hydroxide plates were unequivocally observed.  相似文献   

19.
Hydration products of Ca2AlFeO5, steam cured at 72 C, have been identified using X-ray diffraction and Mössbauer spectroscopy. Iron-bearing phases are hydrogarnet Ca3FeyAl2?y(OH)12 with y = 0.22, and non-crystalline ferrihydrite Fe(OH)3.nH2O. These two are readily distinguished in Mössbauer spectra at 4.2 K where they give, respectively, a single unsplit absorption line and a magnetically split hyperfine pattern with Hhf = 501 kOe. Addition of 5 wt% lime to the calcium aluminoferrite increases the proportion of iron in the hydrogarnet to y = 0.32 while leaving the ferrihydrite unchanged, whereas 5 wt% gypsum eliminates iron from the hydrogarnet entirely and produces an even more disordered non-crystalline ferric hydrate.  相似文献   

20.
Hydration products of fly ash-portland cements were studied with x-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM) as part of a continuing research effort to understand the pozzolanic activity of fly ashes. It was found that the amount of calcium hydroxide crystals in the cement pastes is diminished due to the addition of fly ash to the cement. Ettringite was produced in the early age, and the consumption of sulfate by the formation of ettringite was accelerated by the addition of fly ash. A partial conversion of ettringite to monosulfate within the first 7 days of hydration in the fly ash-portland cement pastes, but the formation of ettringite continued to form up to at least 28 days of hydration in the pastes without fly ash. Examination of the fly ash bearing pastes showed, in all cases, varying amounts of calcium hydroxide and unreacted portland cement, with minor quartz and gehlenite hydrate. It appears that hydration reactions actually occur in the fly ash cement pastes more or less on a particle-by-particle basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号