首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Calculations of the annual input of heavy metals to Jamaica Bay, New York, USA, reveal that sewage effluent carries the largest quantities of Ni, Zn, Cu, and Cd to the bay. Storm sewers and atmospheric fallout are the main sources of Pb. Atmospheric fallout of Zn, Cu, and Cd, although smaller than the combined input from sewers, contributes a significant fraction of these metals. The metal input from landfill leachate is far smaller than that from other sources. Analysis of available data shows that metal concentrations in the sediment of the bay correlate with each other and with percent total organic carbon (%TOC). This is consistent with the observation that the input of metals is predominantly associated with sewage. It is demonstrated that metal-TOC ratios, rather than metal concentrations, must be used in efforts to detect local intensive sources of metals in solution; metal-TOC ratios in intertidal sediment adjacent to these landfills are elevated by the adsorption of leachate metals, while metal concentrations are not. Subtidal sediment within a few hundred meters from two landfills shows no evidence of the addition of metals from that source, which is consistent with the small input of metals estimated for these landfills. The evidence cited in this study sharply contradicts the implication made in a widely publicized report issued by an environmental advocacy group that a significant link exists between metals found in subtidal sediment of Jamaica Bay and landfill leachate.  相似文献   

2.
The characterization of total and leachable metals in foundry molding sands   总被引:1,自引:0,他引:1  
Waste molding sands from the foundry industry have been successfully used as a component in manufactured soils, but concern over metal contamination must be addressed before many states will consider this beneficial use. Since there is little data available on this topic, the purpose of this study was to characterize total and leachable metals from waste molding sands. A total elemental analysis for Ag, Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, V, and Zn was conducted on 36 clay-bonded and seven chemically bonded molding sands. Total metal concentrations in the molding sands were similar to those found in agricultural soils. The leaching of metals (i.e. Ag, As, Ba, Be, Cd, Cr, Cu, Ni, Pb, Sb, and Zn) was assessed via the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and ASTM water leach test. Based on the TCLP data, none of the 43 molding sands would meet the Resource Conservation and Recovery Act (RCRA) characteristic for toxicity due to high Ag, As, Ba, Cd, Cr, and Pb. Compared to the TCLP results, the metal concentrations were generally lower in the SPLP and ASTM extracts, which is likely related to the buffering capacity of the extraction fluids.  相似文献   

3.
This study investigated the degree to which human activities through urbanization influence heavy metal concentrations in a suburban landscape in Ankeny, IA. Residential areas from different years in nine time periods of development were identified from aerial photos. Soil cores were collected from the center of the front yard of 10 randomly selected homes. Cores were subdivided into 0- to 5-, 5- to 10-, and 10- to 20-cm increments from a composite of five cores. The soils were analyzed for organic C, pH, and total Cd, Co, Cr, Cu, Ni, Pb, and Zn. Results showed that organic C increased and pH decreased with time, and that there was a general decreasing trend in heavy metal concentrations from the pre-1939 period until 1983-1990, after which there was a sharp increase in the concentrations of most of the metals. The mean Cu concentration ranged from 21 mg kg(-1) for the pre-1939 time period of development to 14.9 mg kg(-1) for the recent period of development (2003-2005). Nickel concentrations increased significantly with depth with means of 21.3 mg kg(-1) at depth 0 to 5 cm, 22.5 mg kg(-1) at depth 5 to 10 cm, and 23.0 mg kg(-1) at depth 10 to 20 cm. The concentrations of heavy metals were significantly intercorrelated, except Zn, suggesting their coexistence as mineral constituents or common contamination source. The concentrations of Cu and Pb in some locations could be due to anthropogenic inputs or higher organic matter content in soils adjacent to older homes. There appears to have been a source that caused an increase in Cd, Cr, Co, Cu, Pb, and Ni concentrations in soil adjacent to homes built between 1983 and 1990.  相似文献   

4.
Filters, containing glass-fiber (GF) filter material, are commonly used as the primary filter or as the prefilter in sampling natural waters and laboratory experiments with high concentrations of suspended solids. We observed that GF filter material removed substantial quantities of trace metals from solutions of low ionic strength at near neutral and slightly acidic pH. The GF material sorbed essentially all Pb and Ag from 5-mL aliquots of solutions containing 0.054 and 0.093 mM, respectively. Somewhat less Ni was sorbed from a 0.099 mM solution. This material retained about 43 micromol of Ag per gram of GF material (4600 microg/g). The Ag and Ni sorption was highest at low KNO(3) concentrations (as background electrolyte) and decreased to a constant concentration of sorbed metal at approximately 10 mM KNO(3). Glass-fiber filter material should only be used with careful testing for the elements of concern under conditions that closely match expected environmental or experimental conditions.  相似文献   

5.
To investigate the contamination levels and sources for heavy metals that have occurred during the development of cities, sediment cores collected from typical urban shallow lakes (Xuanwu Lake and Mochou Lake) in Nanjing, China were analyzed for Cu, Pb, Zn, Cd, Cr, Ni, and for Pb stable isotopic ratios. No significant differences were found in the concentrations of Cu, Ni and Cd among sediment layers from Xuanwu or in the levels of Cr and Ni among sediment layers from Mochou. However, there were significant differences among the layers in the concentrations of Cr, Zn and Pb in Xuanwu and Cu, Zn, Cd and Pb in Mochou. Based on geoaccumulation indexes and enrichment factors, Cd was the primary pollutant at all depths in the sediment cores. The ratios of (206)Pb/(207)Pb and (208)Pb/(206)Pb differ significantly among sediment layers in Xuanwu. No significant differences were found on the ratios of (208)Pb/(206)Pb in Mochou, but the ratios of (206)Pb/(207)Pb differ significantly among some of the sediment layers in Mochou. The range of (208)Pb/(206)Pb and (206)Pb/(207)Pb ratios was found to be 2.098-2.106 and 1.170-1.176, respectively, for sediment cores from Mochou Lake and 2.091-2.104 and 1.168-1.183, respectively, for cores from Xuanwu Lake. The differences in heavy metal concentrations and the Pb isotopic ratios with depth for the cores from Xuanwu and Mochou confirmed that the contamination sources changed during the formation of the different sediment layers. Furthermore, the ratios of (206)Pb/(207)Pb demonstrated that gasoline and vehicular Pb were not the primary sources of Pb contamination at different depths in the sediment cores in Xuanwu Lake and Mochou Lake.  相似文献   

6.
Heavy metals in suburban soils pose both indirect and direct health risks. This study assessed the concentrations of Cr, Zn, Pb, and Cd in Jengka (Malaysia) suburban soil and estimated the human health risk. Health risk assessment (HRA) was utilized to assess non-cancer and cancer risks. The concentrations of heavy metals increased in the following order: Cd < Zn < Cr < Pb. The heavy metals were found to be divided into two components using principal component analysis (PCA), with PC1 comprising Pb and Cd and PC2 containing Zn and Cr. PC1 originates from anthropogenic sources, while PC2 is often from mixed anthropogenic and natural sources. Despite having the lowest mean concentration, Cd was enriched based on the geo-accumulation index (Igeo) and enrichment factor (EF). Average hazard index values were below the acceptable threshold (HI < 1) for dermal and inhalation pathways suggesting a low non-cancer risk. Jengka suburban soil had total lifetime cancer risk values slightly higher than the acceptable threshold (1 × 10−5). Skin contact was the most prominent contributing exposure pathway for both non-carcinogenic and carcinogenic risks. This study suggests that heavy metal bioactivity levels be used to make a plausible HRA of heavy metal pollution in suburban soils.  相似文献   

7.
Eichhornia crassipes was tested for its ability to bioconcentrate 8 toxic metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) commonly found in wastewater from industries. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 mM of each heavy metal individually for 21 days. The test plant had the lowest and the highest tolerance indices for Hg and Zn, respectively. A significant (P ≤ .05) reduction in biomass production was observed in metal treated plants compared with the control. All strace elements accumulated to higher concentrations in roots than in shoots. Trace element concentrations in tissues and the bioconcentration factors (BCF) were proportional to the initial concentration of individual metal in the growth medium and the duration of exposure. From a phytoremediation perspective, E. crassipes is a promising plant species for remediation of natural water bodies and/or wastewater polluted with low levels of Zn, Cr, Cu, Cd, Pb, Ag and Ni.  相似文献   

8.
Due to anthropogenic inputs, elevated concentrations of metals frequently occur in aquatic sediments. In order to make defensible estimates of the potential risk of metals in sediments and/or develop sediment quality criteria for metals, it is essential to identify that fraction of the total metal in the sediments that is bioavailable. Studies with a variety of benthic invertebrates indicate that interstitial (pore) water concentrations of metals correspond very well with the bioavailability of metals in test sediments. Many factors may influence pore water concentrations of metals; however, in anaerobic sediments a key phase controlling partitioning of several cationic metals (cadmium, nickel, lead, zinc, copper) into pore water is acid volatile sulfide (AVS). In this paper, we present an overview of the technical basis for predicting bioavailability of cationic metals to benthic organisms based on pore water metal concentrations and metal-AVS relationships. Included are discussions of the advantages and limitations of metal bioavailability predictions based on these parameters, relative both to site-specific assessments and the development of sediment quality criteria.  相似文献   

9.
In Southeast Asia the aquatic macrophyte water spinach (Ipomoea aquatica Forsk.) is a popular vegetable that is cultivated in freshwater courses. These often serve as recipients for domestic and other sorts of wastewater that often contain a variety of pollutants, such as heavy metals. In addition, fertilizers are frequently used where water spinach is cultivated commercially for the food market. To estimate the importance of ambient nutrient concentrations for accumulation of mercury (Hg), cadmium (Cd), and lead (Pb) in water spinach, plants were exposed to nutrient solutions of different strength and with varying metal concentrations. Metal-induced toxic effects, which might possibly affect the yield of the plants, were also studied. The lower the nutrient strength in the medium was, the higher the metal concentrations that accumulated in the different plant parts and the lower the metal concentration in the medium at which metal-induced toxic effects occurred. Accordingly, internal metal concentrations in the plants were correlated to toxic effects. Plants exposed to metals retained a major proportion of the metals in the roots, which had a higher tolerance than shoots for high internal metal concentrations.  相似文献   

10.
In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. These analyses have been extended to include 75 small estuarine systems across the mid-Atlantic and southern New England regions of the USA. Because of the different characteristics and dynamics of the estuaries across these regions, adjustment for differing hydrology, sediment characteristics, and sediment origins were included in the analysis. Multiple linear regression with stepwise selection was used to develop statistical models for sediment metals, organics, and total polycyclic aromatic hydrocarbons (PAHs). The landscape metrics important for explaining the variation in sediment metals levels (R2 = 0.72) were the percent area of nonforested wetlands (negative contribution), percent area of urban land, and point source effluent volume and metals input (positive contributions). The metrics important for sediment organics levels (R2 = 0.5) and total PAHs (R2 = 0.46) were percent area of urban land (positive contribution) and percent area of nonforested wetlands (negative contribution). These models included silt-clay content (metals) or total organic C (organics, total PAHs) of sediments and grouping by estuarine hydrology, suggesting the importance of sediment characteristics and hydrology in mitigating the influence of the landscape metrics on sediment contamination levels. The overall results from this study are indicative of how statistical models can be developed relating landscape metrics to estuarine sediment contamination for distributions of land cover and point source discharges.  相似文献   

11.
The environmental fate of herbicides in estuaries is poorly understood. Estuarine physical transport processes and the episodic nature of herbicide release into surface waters complicate interpretation of water concentration measurements and allocation of sources. Water concentrations of herbicides and two triazine degradation products (CIAT [6-amino-2-chloro-4-isopropylamino-s-triazine] and CEAT [6-amino-2-chloro-4-ethylamino-s-triazine]) were measured in surface water from four sites on 40 d from 4 Apr. through 29 July 19% in the Patuxent River estuary, part of the Chesapeake Bay system. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was most persistent and present in the highest concentrations (maximum = 1.29 microg/L). Metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide], CIAT, CEAT, and simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine) were frequently detected with maximum concentration values of 0.61, 1.1, 0.76, and 0.49 microg/L, respectively. A physical transport model was used to interpret atrazine concentrations in the context of estuarine water transport, giving estimates of in situ degradation rates and total transport. The estimated half-life of atrazine in the turbid, shallow upper estuary was t(1/2) = 20 d, but was much longer (t(1/2) = 100 d) in the deeper lower estuary. Although most (93%) atrazine entered the estuary upstream via the river, simulations suggested additional inputs directly to the lower estuary. The total atrazine load to the estuary from 5 April to 15 July was 71 kg with 48% loss by degradation and 31% exported to the Chesapeake Bay. Atrazine persistence in the estuary is directly related to river flows into the estuary. Low flows will increase atrazine residence time in the upper estuary and increase degradation losses.  相似文献   

12.
High transition metal concentrations were previously unexpectedly observed in soil water extracted by suction lysimeters following forest N fertilization. This observation called for additional measurements to investigate if the finding is a general phenomenon and, if so, whether stream water concentrations of transition metals could increase as a result of N fertilization. The measured levels of Cd in the preliminary findings were well above health limits for drinking water. Hence, the problem could be of major concern. Here we report on soil water and stream water concentrations at two partly fertilized watersheds. All sites were situated in the central part of Sweden. The N application (150 kg N ha(-1) in the form of calcium ammonium nitrate) resulted in increased concentrations of nitrate, and a pulse of acidity through the soil profile, which increased the solubility of transition metals (mainly Cd and Zn) and Al. Stream water concentrations of transition metals, on the other hand, were not affected during the studied period by the increased solubility of transition metals in the soil. The data imply that the solubilized transition metals probably insolubilize further down the soil profile, and that there is no risk from forest N fertilization (at normal soil pH levels) of transition metal levels increasing in nearby surface waters. To our knowledge, this is the first time this side effect of N fertilization has been considered.  相似文献   

13.
In this study we have worked on the evaluation of heavy metal contamination in the sediments taken from the Tisza River and its tributaries, and thereby used the sequential extraction method, geochemical normalization, the calculation of the enrichment factor (EF), and the methods of statistical analysis. The chemical fractionation of Ni, Cu, Zn, Cr, Pb, Fe, and Mn, carried out by using the modified Tessier method, points to different substrates and binding mechanisms of Cu, Zn and Pb in sediments of the tributaries and sediments of the Tisza River. The similarities in the distributions of Fe and Ni in all types of sediments are the result of geochemical similarity as well as of the fact that natural sources mainly affect the concentration levels of these elements. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that metal contamination (Cu, Pb, Zn and Cr) was recorded in the sediments of the Tisza River, while no indications of pollution were detected in the tributaries of the Tisza River and the surrounding pools. The maximum values of the EF were close to 6 for Cu and Pb (moderately severe enrichment) and close to 4.5 for Zn (indicating moderate enrichment). It can be said that the Tisza River is slightly to moderately severely polluted with Cu, Zn, and Pb, and minorly polluted with Cr. It is concluded that sediments of the Tisza serve as a repository for heavy metal accumulation from adjacent urban and industrial areas.  相似文献   

14.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

15.
ABSTRACT: Changes in metal concentrations during storage of acidified water samples were studied. Water samples with high concentrations of suspended sediment were collected from the Fraser River, British Columbia. These samples were analyzed for “extractable” metals, which are defined to be the dissolved metals plus those metals extracted from suspended sediment by dilute mineral acid. Concentrations of extractable Cu, Fe, Pb, Zn, Ni, Co, Mn, and Cd were determined over time. Metal concentrations in these water samples were not stable and showed significant increases throughout the storage period. These results suggest that the extractable metal technique is inappropriate for the analysis of water samples containing suspended sediment.  相似文献   

16.
Variations in the chemical properties of landfill leachate   总被引:4,自引:0,他引:4  
Landfill leachates were collected and their chemical properties analyzed once every two months over a ten-month period from the Gin Drinkers' Bay (GDB) and Junk Bay (JB) landfills. The contents of solids, and inorganic and organic components fluctuated considerably with time. In general, the chemical properties of the two leachates correlated negatively (P<0.05) with the amounts of rainfall prior to the sampling periods. However, magnesium and pH of the leachates remained relatively constant with respect to sampling time. The JB leachate contained higher average contents of solids and inorganic and organic matter than those of GDB with the exception of trace metals. Trace metals were present in the two leachates in trace quantities (<1.0 mg/liter). The concentrations of average ammoniacal nitrogen were 1040 and 549 mg/liter, while chemical oxygen demand (COD) values were 767 and 695 mg/liter for JB and GDB leachates, respectively. These results suggest that the leachates need further treatment before they can be discharged to the coastal waters.  相似文献   

17.
Chemical fractionation of seven heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) was studied using a modified three-step sequential procedure to assess their impacts in the sediments of the Seyhan River, Turkey. Samples were collected from six representative stations in two campaigns in October 2009 and June 2010, which correspond to the wet and dry seasons, respectively. The total metal concentrations in the sediments demonstrated different distribution patterns at the various stations. Cadmium was the only metal that was below detection at all stations during both sampling periods. Metal fractionation showed that, except for Mn and Pb, the majority of metals were found in the residual fraction regardless of sampling time, indicating that these metals were strongly bound to the sediments. The potential mobility of the metals (non-residual fractions) is reflected in the following ranking: Pb > Mn > Zn > Cu > Ni > Cr in October 2009 and Mn > Pb > Zn > Cu > Ni > Cr in June 2010. The second highest proportion of metals was bound to organic matter/sulfides, originating primarily from anthropogenic activities. Non-residual metal fractions for all stations were highest in June 2010, which may be linked to higher organic matter concentrations in the sediment samples with 1.40% and 15.1% in October 2009 and June 2010, respectively. Potential sediment toxicity was evaluated using the Risk Assessment Code (RAC). Based on RAC classification, Cd and Cr pose no risk, Cu and Ni pose low risk, Pb and Zn were classified as medium risk metals, while the environmental risk from Mn was high. In addition, based on the sediment quality guidelines (SQG), the Seyhan River can be classified as a river with no, to moderate, toxicological risks, based on total metal concentrations.  相似文献   

18.
Use of metal-rich sewage sludge as soil fertilizer may result in trace- metal contamination of soils. This study was conducted to evaluate the effects of long-term sludge application on trace-metal (Zn, Cu, Pb, and Ni) distribution and potential bioavailability in Nigerian soils under a tropical wet-dry climate. Total metal analyses, sequential chemical fractionation, and DTPA extractions were carried out on samples of control and sludge-amended pedons in Nigeria (a Rhodic Kandiustult and two Rhodic Kandiustalfs from Nigeria, respectively). The sewage sludge applied to the soils contained higher levels of Zn and Cu than Pb and Ni. The control pedon contained low levels of all four metals. Soil enrichment factors (EF) were calculated for each metal in the sludge-amended pedons. Compared with the control soil, the sludge-amended pedons showed elevated levels of Zn and Cu, reflecting the trace-metal composition of the sewage sludge. Zinc and Cu in the sludge-amended soils were strongly enriched at all depths in the profile, indicating that they had moved below the zone of sludge application. The sequential extraction and DTPA analyses indicated that the sludge-amended soils contained more readily extractable and bioavailable metal ions than the unamended soil.  相似文献   

19.
Like many coastal zones and estuaries, the Chesapeake Bay has been severely degraded by cultural eutrophication. Rising implementation costs and difficulty achieving nutrient reduction goals associated with point and nonpoint sources suggests that approaches supplemental to source reductions may prove useful in the future. Enhanced oyster aquaculture has been suggested as one potential policy initiative to help rid the Bay waters of excess nutrients via harvest of bioassimilated nutrients. To assess this potential, total nitrogen (TN), total phosphorous (TP), and total carbon (TC) content were measured in oyster tissue and shell at two floating-raft cultivation sites in the Chesapeake Bay. Models were developed based on the common market measurement of total length (TL) for aquacultured oysters, which was strongly correlated to the TN (R2 = 0.76), TP (R2 = 0.78), and TC (R2 = 0.76) content per oyster tissue and shell. These models provide resource managers with a tool to quantify net nutrient removal. Based on model estimates, 10(6) harvest-sized oysters (76 mm TL) remove 132 kg TN, 19 kg TP, and 3823 kg TC. In terms of nutrients removed per unit area, oyster harvest is an effective means of nutrient removal compared with other nonpoint source reduction strategies. At a density of 286 oysters m(-2), assuming no mortality, harvest size nutrient removal rates can be as high as 378 kg TN ha(-1), 54 kg TP ha(-1), and 10,934 kg TC ha(-1) for 76-mm oysters. Removing 1 t N from the Bay would require harvesting 7.7 million 76-mm TL cultivated oysters.  相似文献   

20.
Responses of lagoon crab, Callinectes amnicola were explored as useful biological markers of heavy metal pollution. The toxicity level of the metals based on the 96-h LC50 values showed that copper with LC50 value of 0.018 mM was found to be two times more toxic than Lead (0.041 mM) against the lagoon crab, C. amnicola. The exposure of the lagoon crab to sublethal concentrations (1/100th and 1/10th of 96-h LC50 values) of Cu and Pb compound, respectively, resulted in the bioaccumulation of the test metals to varying degrees in the selected organs that were dependent on the type of metal and concentration of metal compound in the test media. The degree of metal (Cu and Pb) accumulation was generally in the following order: gills > muscle > heptopancrease. Exposure of the crabs to sublethal concentrations of the metals also caused pathological changes such as the disruption of the gill filaments and degeneration of glandular cells with multifocal areas of calcification in the hepatopancreas. A reduction in the weight of the exposed animals over a 14-day period of observation was also recorded. The significance of these results and the usefulness of the biological endpoints in monitoring programmes aimed at establishing the total environmental level of heavy metals in aquatic ecosystems were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号