首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Transforming growth factor-β (TGF-β) signaling triggers diverse biological actions in inflammatory diseases. In tissue fibrosis, it acts as a key pathogenic regulator for promoting immunoregulation via controlling the activation, proliferation, and apoptosis of immunocytes. In cancer, it plays a critical role in tumor microenvironment (TME) for accelerating invasion, metastasis, angiogenesis, and immunosuppression. Increasing evidence suggest a pleiotropic nature of TGF-β signaling as a critical pathway for generating fibrotic TME, which contains numerous cancer-associated fibroblasts (CAFs), extracellular matrix proteins, and remodeling enzymes. Its pathogenic roles and working mechanisms in tumorigenesis are still largely unclear. Importantly, recent studies successfully demonstrated the clinical implications of fibrotic TME in cancer. This review systematically summarized the latest updates and discoveries of TGF-β signaling in the fibrotic TME.  相似文献   

2.
The tumor microenvironment plays a critical role in defining the growth and malignancy of solid tumors. Extracellular matrix (ECM) proteins such as collagen, vitronectin, and fibronectin are major components of the tumor microenvironment. Tumor growth-promoting reciprocal interaction between ECM and cytoplasmic proteins is regulated by the cell surface receptors called integrins. This study investigated the mechanism by which integrin β1 promotes pancreatic tumor growth. In MIA PaCa-2 pancreatic cancer cell line, the loss of integrin β1 protein reduced the ability of cells to proliferate in a 3D matrix and compromised the ability to form a focal adhesion complex. Decreased expression of integrin α5 was observed in KO cells, which resulted in impaired cell spreading and adhesion on vitronectin and fibronectin. Reduced expression of the integrin-associated protein, kindlin-2 was also recorded. The downregulation of kindlin-2 decreased the phosphorylation of Smad2/3 by reducing the expression of TGF-β receptor 2. These results unravel a new mechanism of integrin β1 in tumor growth by modifying the expression of kindlin-2 and TGF-β receptor 2 signaling.  相似文献   

3.
The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFβ on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFβ receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFβ-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFβ-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFβ as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFβ signaling as a therapeutic target in HCC patients.  相似文献   

4.
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that regulates cellular lipid and glucose metabolism and also plays an inhibitory role in various cancers. However, the role of PPARγ in hepatocellular carcinoma (HCC) remains controversial. This study aimed to investigate the prognostic value of PPARγ in HCC and its role in inhibiting tumor progression, namely, HCC cell growth, migration, and angiogenesis. Immunohistochemical PPARγ staining was examined in 83 HCC specimens to investigate the clinicopathological correlations between PPARγ expression and various parameters. The functional role of PPARγ was determined via PPARγ overexpression and knockdown in HCC cells. Patients with low HCC tissue PPARγ expression were significantly younger (p = 0.006), and exhibited more tumor numbers (p = 0.038), more macroscopic vascular invasion (MVI) (p = 0.008), and more advanced TNM (size of primary tumor, number of regional lymph nodes, and distant metastasis) stages at diagnosis (p = 0.013) than patients with high HCC tissue PPARγ expression. PPARγ knockdown increased HCC cell growth, migration, and angiogenesis, while PPARγ overexpression reduced HCC cell growth, migration, and angiogenesis. These results suggest that low PPARγ expression is an independent predictor of more MVI in HCC patients. PPARγ contributes to the suppression of HCC cell growth, migration, and angiogenesis. Therefore, PPARγ may be a therapeutic target in HCC patients.  相似文献   

5.
6.
Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.  相似文献   

7.
8.
Despite the improved overall survival rates in most cancers, pancreatic cancer remains one of the deadliest cancers in this decade. The rigid microenvironment, which majorly comprises cancer-associated fibroblasts (CAFs), plays an important role in the obstruction of pancreatic cancer therapy. To overcome this predicament, the signaling of receptor tyrosine kinases (RTKs) and TGF beta receptor (TGFβR) in both pancreatic cancer cell and supporting CAF should be considered as the therapeutic target. The activation of receptors has been reported to be aberrant to cell cycle regulation, and signal transduction pathways, such as growth-factor induced proliferation, and can also influence the apoptotic sensitivity of tumor cells. In this article, the regulation of RTKs/TGFβR between pancreatic ductal adenocarcinoma (PDAC) and CAFs, as well as the RTKs/TGFβR inhibitor-based clinical trials on pancreatic cancer are reviewed.  相似文献   

9.
Autocrine signaling is defined as the production and secretion of an extracellular mediator by a cell followed by the binding of that mediator to receptors on the same cell to initiate signaling. Autocrine stimulation often operates in autocrine loops, a type of interaction, in which a cell produces a mediator, for which it has receptors, that upon activation promotes expression of the same mediator, allowing the cell to repeatedly autostimulate itself (positive feedback) or balance its expression via regulation of a second factor that provides negative feedback. Autocrine signaling loops with positive or negative feedback are an important feature in cancer, where they enable context-dependent cell signaling in the regulation of growth, survival, and cell motility. A growth factor that is intimately involved in tumor development and progression and often produced by the cancer cells in an autocrine manner is transforming growth factor-β (TGF-β). This review surveys the many observations of autocrine TGF-β signaling in tumor biology, including data from cell culture and animal models as well as from patients. We also provide the reader with a critical discussion on the various experimental approaches employed to identify and prove the involvement of autocrine TGF-β in a given cellular response.  相似文献   

10.
The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.  相似文献   

11.
Excessive cross-linking is a major factor in the resistance to the remodelling of the extracellular matrix (ECM) during fibrotic progression. The role of TGFβ signalling in impairing ECM remodelling has been demonstrated in various fibrotic models. We hypothesised that increased ECM cross-linking by TGFβ contributes to skin fibrosis in Systemic Sclerosis (SSc). Proteomics was used to identify cross-linking enzymes in the ECM of primary human dermal fibroblasts, and to compare their levels following treatment with TGFβ-1. A significant upregulation and enrichment of lysyl-oxidase-like 1, 2 and 4 and transglutaminase 2 were found. Western blotting confirmed the upregulation of lysyl hydroxylase 2 in the ECM. Increased transglutaminase activity in TGFβ-1 treated ECM was revealed from a cell-based assay. We employed a mass spectrometry-based method to identify alterations in the ECM cross-linking pattern caused by TGFβ-1. Cross-linking sites were identified in collagens I and V, fibrinogen and fibronectin. One cross-linking site in fibrinogen alpha was found only in TGFβ-treated samples. In conclusion, we have mapped novel cross-links between ECM proteins and demonstrated that activation of TGFβ signalling in cultured dermal fibroblasts upregulates multiple cross-linking enzymes in the ECM.  相似文献   

12.
The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects cancer cell growth and evaluated the responses of IL-32θ-expressing cells to other cancer therapy. We compared the functions of IL-32θ in triple-negative breast cancer MDA-MB-231 cells that stably express IL-32θ, with MDA-MB-231 cells transfected with a mock vector. Slower growth was observed in cells expressing IL-32θ than in control cells, and changes were noted in nuclear morphology, mitotic division, and nucleolar size between the two groups of cells. Interleukin-32θ significantly reduced the colony-forming ability of MDA-MB-231 cells and induced permanent cell cycle arrest at the G1 phase. Long-term IL-32θ accumulation triggered permanent senescence and chromosomal instability in MDA-MB-231 cells. Genotoxic drug doxorubicin (DR) reduced the viability of MDA-MB-231 cells not expressing IL-32θ more than in cells expressing IL-32θ. Overall, these findings suggest that IL-32θ exerts antiproliferative effects in breast cancer cells and initiates senescence, which may cause DR resistance. Therefore, targeting IL-32θ in combination with DR treatment may not be suitable for treating metastatic breast cancer.  相似文献   

13.
In renal cell carcinoma (RCC), single members of the Wnt/β-catenin signaling cascade were recently identified to contribute to cancer progression. However, the role of Wnt1, one of the key ligands in β-catenin regulation, is currently unknown in RCC. Therefore, alterations of the Wnt1/β-catenin axis in clear cell RCC (ccRCC) were examined with regard to clinicopathology, overall survival (OS) and cancer specific survival (CSS). Corresponding ccRCCs and benign renal tissue were analyzed in 278 patients for Wnt1 and β-catenin expression by immunohistochemistry in tissue microarrays. Expression scores, including intensity and percentage of stained cells, were compared between normal kidney and ccRCCs. Data was categorized according to mean expression scores and correlated to tumor and patients’ characteristics. Survival was analyzed according to the Kaplan-Meier and log-rank test. Univariable and multivariable Cox proportional hazard regression models were used to explore the independent prognostic value of Wnt1 and β-catenin. In ccRCCs, high Wnt1 was associated with increased tumor diameter, stage and vascular invasion (p ≤ 0.02). High membranous β-catenin was associated with advanced stage, vascular invasion and tumor necrosis (p ≤ 0.01). Higher diameter, stage, node involvement, grade, vascular invasion and sarcomatoid differentiation (p ≤ 0.01) were found in patients with high cytoplasmic β-catenin. Patients with a high cytoplasmic β-catenin had a significantly reduced OS (hazard ratio (HR) 1.75) and CSS (HR 2.26), which was not independently associated with OS and CSS after adjustment in the multivariable model. Increased ccRCC aggressiveness was reflected by an altered Wnt1/β-catenin signaling. Cytoplasmic β-catenin was identified as the most promising candidate associated with unfavorable clinicopathology and impaired survival. Nevertheless, the shift of membranous β-catenin to the cytoplasm with a subsequently increased nuclear expression, as shown for other malignancies, could not be demonstrated to be present in ccRCC.  相似文献   

14.
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.  相似文献   

15.
SMAD4, a key regulator of transforming growth factor-β (TGF-β) signaling, plays a major role in cell growth, migration, and apoptosis. In particular, TGF-β/SMAD induces growth arrest, and SMAD4 induces the expression of target genes such as p21WAF1 and p15INK4b through its interaction with several cofactors. Thus, inactivating mutations or the homozygous deletion of SMAD4 could be related to tumorigenesis or malignancy progression. However, in some cancer types, SMAD4 is neither mutated nor deleted. In the current study, we demonstrate that TGF-β signaling with a preserved SMAD4 function can contribute to cancer through associations with negative pathway regulators. We found that nuclear respiratory factor-1 (NRF1) is a novel interaction SMAD4 partner that inhibits TGF-β/SMAD4-induced p15INK4b mRNA expression by binding to SMAD4. Furthermore, we confirmed that NRF1 directly binds to the core region of the SMAD4 promoter, thereby decreasing SMAD4 mRNA expression. On the whole, our data suggest that NRF1 is a negative regulator of SMAD4 and can interfere with TGF-β/SMAD-induced tumor suppression. Our findings provide a novel perception into the molecular basis of TGF-β/SMAD4-signaling suppression in tumorigenesis.  相似文献   

16.
Activation of the tumor-associated stroma to support tumor growth is a common feature observed in different cancer entities. This principle is exemplified by cancer-associated fibroblasts (CAFs), which are educated by the tumor to shape its development across all stages. CAFs can alter the extracellular matrix (ECM) and secrete a variety of different molecules. In that manner they have the capability to affect activation, survival, proliferation, and migration of other stromal cells and cancer cell themselves. Alteration of the ECM, desmoplasia, is a common feature of breast cancer, indicating a prominent role for CAFs in shaping tumor development in the mammary gland. In this review, we summarize the multiple roles CAFs play in mammary carcinoma. We discuss experimental and clinical strategies to interfere with CAFs function in breast cancer. Moreover, we highlight the issues arising from CAFs heterogeneity and the need for further research to identify CAFs subpopulation(s) that can be targeted to improve breast cancer therapy.  相似文献   

17.
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.  相似文献   

18.
19.
20.
Tumors exist in a complex milieu where interaction with their associated microenvironment significantly contributes to disease progression. Cancer-associated fibroblasts (CAFs) are the primary component of the tumor microenvironment and participate in complex bidirectional communication with tumor cells. CAFs support the development of various hallmarks of cancer through diverse processes, including direct cell–cell contact, paracrine signaling, and remodeling and deposition of the extracellular matrix. Calcium signaling is a key second messenger in intra- and inter-cellular signaling pathways that contributes to cancer progression; however, the links between calcium signaling and CAFs are less well-explored. In this review, we put into context the role of calcium signaling in interactions between cancer cells and CAFs, with a focus on migration, proliferation, chemoresistance, and genetic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号