首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the sensitivity for cisplatin-induced apoptosis in a panel of four testicular germ cell tumour (TGCT) cell lines and monitored the cellular expression of the apoptosis-related proteins p53, Bcl-2 and Bax. Three of four TGCT cell lines (NT2, NCCIT and S2) were hypersensitive for cisplatin-induced apoptosis, while the TGCT cell line 2102 EP appeared to be resistant for cisplatin-induced apoptosis, even at relatively high drug concentrations (12.5 microM). For all four cell lines, the induction of apoptosis by cisplatin correlated with drug sensitivity in the MTT assay. The differences in chemosensitivity and induction of apoptosis could not be attributed to differences in cellular platinum accumulation, DNA platination or platinum-DNA adduct removal. We next analysed the relationship between p53 status and cisplatin-induced up-regulation of p53, and the susceptibility to cisplatin-induced apoptosis. Wild-type p53 containing NT2 and 2102 EP cells showed p53 up-regulation upon drug treatment, and NCCIT (mutant p53) and S2 (no p53 protein) cells did not. Consistently, the increase in wild-type p53 protein in NT2 and 2102 EP cells led to an increase in mRNA level of the p53 downstream gene p21/WAF/CIP, whereas mutant p53-containing NCCIT cells and p53-non-expressing S2 cells could not transactivate this p53-responsive gene. As NT2, NCCIT and S2 were readily triggered into apoptosis, while 2102 EP cells failed to undergo cisplatin-induced apoptosis, our data suggest that the presence of wild-type and/or transactivation-competent p53 might not be an absolute prerequisite for efficient induction of apoptosis in TGCT cell lines. Also endogenous levels of Bcl-2 and Bax expression did not correlate with cisplatin-induced apoptosis. In addition, the endogenous Bcl-2 and Bax expression was not affected by cisplatin treatment. The present study suggests that, at least in our panel of TGCT cell lines, hypersensitivity for cisplatin-induced apoptosis might not be necessarily correlated with the presence of wild-type p53 and is probably not associated with Bcl-2 and Bax expression.  相似文献   

2.
We investigated the role of p53 and of the Bcl-2 family proteins in the apoptotic response of a panel of testicular tumour cell lines (NT2, NCCIT, S2 and 2102 EP). The p53 gene status and the capacity of the p53 protein to transactivate the p21/WAF/CIP gene were determined, and we examined the correlation between p53 status and the susceptibility to cisplatin-induced apoptosis. In contrast to wild-type p53-containing NT2 and 2102 EP cells, NCCIT (mutant p53) and S2 (no p53 protein) cells were shown to be p53-transactivation defective. However, NCCIT and S2 cells with non-functional p53 were readily triggered into apoptosis by cisplatin, whereas p53-transactivation competent 2102 EP cells failed to undergo cisplatin-induced apoptosis. The defective apoptotic pathway in 2102 EP cells was reflected by a 4-fold decreased sensitivity to cisplatin in the MTT assay. We further demonstrated that the p53-independent differential cisplatin sensitivity among the testicular germ cell tumour (TGCT) cell lines was not due to differences in cellular cisplatin accumulation or DNA platination. The pattern of endogenous expression levels of Bax, Bcl-2, Bcl-x and Bak, which was not modulated by cisplatin treatment, demonstrated that these Bcl-2 family proteins are not involved in drug-induced apoptosis in the TGCT cell lines. Our results suggest a lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in our panel of TGCT cell lines. We conclude that the cisplatin-induced apoptotic pathway in TGCT cell lines might be p53-independent and is probably not associated with differences in the Bcl-2/Bax rheostat.  相似文献   

3.
The effects of the non-tumor-promoting protein kinase C (PKC) activator bryostatin 1 and the PKC inhibitors staurosporine and UCN-01 were examined with respect to modulation of 1-[beta-D-arabinofuranosyl]cytosine (ara-C)-induced apoptosis in human myeloid leukemia cells (HL-60) overexpressing the antiapoptotic protein Bcl-2. HL-60/Bcl-2 cells displayed a 5-fold increase in Bcl-2 protein compared with empty-vector counter-parts (HL-60/pCEP4) but comparable levels of Bax, Mcl-1, and Bcl-xL. After exposure to an equimolar concentration of ara-C (10 microM for 6 hr), HL-60/Bcl-2 cells were significantly less susceptible to apoptosis, DNA fragmentation, and loss of clonogenicity than HL-60/pCEP4 cells. The protective effect of increased Bcl-2 expression was manifested by a failure of ara-C to induce activation/cleavage of the Yama protease (CPP32; caspase-3) and degradation of one of its substrates, poly(ADP-ribose)polymerase to an 85-kDa cleavage product. When HL-60/Bcl-2 cells were preincubated with bryostatin 1 (10 nM; 24 hr) or coincubated with either staurosporine (50 nM; 6 hr) or UCN-01 (300 nM; 6 hr) after a 1-hr preincubation, exposures that exerted minimal effects alone, ara-C-induced apoptosis and DNA fragmentation were restored to levels equivalent to, or greater than, those observed in empty-vector controls. These events were accompanied by restoration of the ability of ara-C to induce CPP32 cleavage and activation, poly(ADP-ribose) polymerase degradation, and inhibition of colony formation. Western analysis of Bcl-2 protein obtained from overexpressing cells treated with bryostatin 1, staurosporine, or UCN-01 revealed the appearance of a slowly migrating species and a general broadening of the protein band, effects that were insensitive to the protein synthesis inhibitor cycloheximide. Alterations in Bcl-2 protein mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were reversed by treatment of lysates with alkaline phosphatase or protein phosphatase 2A; actions of the latter were blocked by the specific phosphatase inhibitor okadaic acid. In vivo labeling studies of Bcl-2 protein demonstrated increased incorporation of [32PO4]orthophosphate in drug-treated cells. Last, phosphorylated Bcl-2 failed to display decreased binding to the proapoptotic protein Bax. Collectively, these findings indicate that bryostatin 1, which down-regulates PKC, and staurosporine and UCN-01, which directly inhibit the enzyme, circumvent resistance of Bcl-2-overexpressing leukemic cells to ara-C-induced apoptosis and activation of the protease cascade. They also raise the possibility that modulation of Bcl-2 phosphorylation status contributes to this effect.  相似文献   

4.
The Bcl-2 family of proteins regulate apoptosis, some antagonizing cell death and others facilitating it. It has recently been demonstrated that Bcl-2 not only inhibits apoptosis but also restrains cell cycle entry. We show here that these two functions can be genetically dissociated. Mutation of a tyrosine residue within the conserved N-terminal BH4 region had no effect on the ability of Bcl-2 or its closest homologs to enhance cell survival and did not prevent heterodimerization with death-enhancing family members Bax, Bak, Bad and Bik. Neither did this mutation override the growth-inhibitory effect of p53. However, on stimulation with cytokine or serum, starved quiescent cells expressing the mutant proteins re-entered the cell cycle much faster than those expressing comparable levels of wild-type proteins. When wild-type and Y28 mutant Bcl-2 were co-expressed, the mutant was dominant. Although R-Ras p23 has been reported to bind to Bcl-2, no interaction was detectable in transfected cells and R-Ras p23 did not interfere with the ability of Bcl-2 to inhibit apoptosis or cell cycle entry. These observations provide evidence that the anti-apoptotic function of Bcl-2 is mechanistically distinct from its inhibitory influence on cell cycle entry.  相似文献   

5.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

6.
PURPOSE: Testicular germ cell tumors (TGCTs) represent one of the few tumor types that are curable by antineoplastic therapy, probably due to the high sensitivity of this neoplasm to induction of apoptosis by chemotherapeutic agents and/or ionizing radiation. Here, we tested cell susceptibility to radiation-induced apoptosis in a panel of TGCT cell lines and attempted to correlate this with the known potentially relevant molecular determinants (p53 gene status and Bcl-2 family proteins) of apoptosis. METHODS AND MATERIALS: Induction of apoptosis by gamma-radiation was morphologically recognized in NT2, NCCIT, S2, and 2102 EP using Hoechst/PI staining and additionally confirmed by Western blot analysis of PARP cleavage. The p53 gene status was estimated by sequence analysis. Expression of p21/WAF/CIP was determined by Northern blot analysis and immunoblotting was used to monitor p53, Bax, Bcl-2, Bcl-x, and Bak protein levels. In vitro colony formation was studied to establish clonogenic survival curves. RESULTS: NT2 and NCCIT appeared to be susceptible for radiation-induced apoptosis, contrasting 2102 EP and S2 which were highly resistant. Sequence analysis showed that NT2, S2, and 2102 EP are homozygous for wild-type p53 (wtp53), whereas NCCIT contains mutant p53 (mtp53). NT2 and 2102 EP cells showed radiation-induced p53 upregulation, while NCCIT (mtp53) and S2 (no p53 protein) cells did not. Consistently, gamma-radiation-induced DNA damage resulted in a p53-dependent transactivation of the p21/WAF/CIP gene in NT2 and 2102 EP, but not in mtp53-containing NCCIT cells and p53 nonexpressing S2 cells. Constitutive expression of Bax, Bcl-2, Bcl-x, and Bak was not affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis. A discrepancy was found between apoptosis and reproductive death. CONCLUSIONS: The present study revealed that: i) the presence of wtp53 may not be absolutely required for the hypersensitivity for radiation-induced apoptosis in TGCT cell lines, ii) the molecular mechanism underlying the unique radiosensitivity was independent of the expression of Bcl-2 family proteins, and iii) cell susceptibility to apoptosis induction is not sufficiently informative to predict intrinsic radiosensitivity as determined by clonogenic survival.  相似文献   

7.
p53 has been implicated as a determinant of chemosensitivity and radiosensitivity. We measured chemosensitivity of human tumor cell lines (n = 11), with or without wild-type p53, following exposure to clinically useful chemotherapeutic drugs (n = 4). Chemosensitivity and apoptosis induction were correlated independently of p53 status or Bcl-2 protein levels in vitro. Wild-type p53 correlated with chemosensitivity in ovarian carcinoma and some Burkitt's lymphoma cells, but not in leukemia or lung cancer. Bcl-2 levels correlated with chemoresistance only in Burkitt's lymphoma. p53-dependent p21(WAF1/CIP1) induction and cell cycle arrest occurred at sublethal doses of chemotherapy, whereas at lethal doses of chemotherapy apoptotic death was observed, consistent with models proposing a relationship between the level of DNA damage versus survival or death. Loss of apoptosis induction was observed in drug-resistant ML-1 and HL-60 leukemia cells, without changes in p53 or Bcl-2. Targeted loss of p53 protein in H460 lung cancer cells using HPV-16 E6 inhibited the etoposide-induced G1 checkpoint but did not decrease chemosensitivity. Our studies suggest that the simple measurement of apoptosis induction may be a useful predictor of chemosensitivity, at least in vitro, and confirm that p53 status and Bcl-2 expression may be useful predictors of chemosensitivity in certain cell types.  相似文献   

8.
Previous models of cutaneous carcinogenesis have primarily focused on the regulation of keratinocyte (KC) proliferation and differentiation. However, it has become clear in many neoplastic systems that altered rates of cell death and/or inability to undergo growth arrest can also contribute to the development of cancer. Apoptosis-regulatory proteins include those that block apoptosis such as Bcl-2 and Bcl-x, whilst a related protein Bax promotes apoptosis. Cell cycle regulatory proteins include those associated with growth arrest, i.e. p21wafl, p53, and those associated with proliferation, i.e. Ki-67. Paraffin embedded samples from ten different lesions of squamous cell carcinoma (SCC), Bowen's disease (BD), keratoacanthomas (KA), and nine normal adult skin samples were stained by immunohistochemistry to detect expression of Bcl-2, Bcl-x, Bax, Ki-67, p21wafl, p53 and apoptosis (TUNEL assay). Compared to low levels of Bcl-x and Bcl-2 immunostaining in normal skin, all the squamoproliferative lesions had strong and diffuse KC expression of Bcl-x (>80%) but minimal to absent KC Bcl-2 expression (<15%). Bax immunopositivity was limited to the basal layer in normal skin and BD. In contrast, by examining serial sections both Bcl-x and Bax appeared to be coexpressed by the majority of malignant KCs in KA and SCC (>70%). These immunostaining profiles reveal that squamoproliferative lesions, including invasive transformed KCs, preferentially express Bcl-x over Bcl-2, in addition to upregulating their Bax levels. Even though there were numerous TUNEL positive cells in these squamoproliferative lesions, no other evidence of apoptosis was seen reinforcing the necessity to use caution when relying on TUNEL staining for identification of programmed cell death in skin biopsies. Normal sun-exposed skin had low but detectable p53 and rare p21wafl KC expression. Significantly higher numbers of p21wafl and p53 immunopositive KCs were noted throughout the lesions in BD and SCC in contrast to KA where p53 and rare p21wafl immunopositive KCs were primarily limited to the periphery of the tumor cell islands. In general, p53 KC expression was higher in all squamoproliferative lesions and sun-exposed normal skin compared to p21Wafl expression. Summary of the expression of cell cycle regulatory proteins for both p21wafl and p53 KC expression was: SCC > BD > KA, in marked contrast to Ki-67 KC expression which was: BD > KA > SCC. The relatively few malignant cells in SCC that were actively participating in the cell cycle (i.e. Ki-67 positive) suggests that these neoplasms may arise primarily by increased cell survival and resistance to apoptosis rather than by hyperproliferation. These studies emphasize the importance of examining multiple members of protein families that regulate apoptosis, proliferation, growth arrest, and differentiation. It is the overall balance between these cellular phenomena that determine whether a cell remains viable or undergoes programmed cell death and contributes to the appearance of a neoplasm. The overexpression of Bcl-x may confer a survival advantage to malignant KCs unable to growth arrest to repair damaged DNA (mutant p53) and/or undergo terminal differentiation (increased p21wafl). Thus, mutation or aberrant expression of such proteins may participate in the multistep process of carcinogenesis that gives rise to these squamoproliferative lesions.  相似文献   

9.
DNA-damaging agents arrest cell cycle progression at either G1 or G2. A variety of agents such as caffeine have been shown to abrogate the DNA damage-dependent G2 checkpoint and enhance cytotoxicity. Unfortunately, this strategy has not enhanced therapeutic activity because adequate concentrations of these modulators are not tolerated in vivo. Here, using Chinese hamster ovary cell lines, we show that the potent protein kinase inhibitor 7-hydroxy-staurosporine (UCN-01) abrogates the G2 arrest induced by the DNA-damaging agent cisplatin. UCN-01 not only was effective at inducing mitosis when added to G2-arrested cells but also prevented cells from arresting in G2 when added to S-phase cells. Furthermore, UCN-01 did not cause premature mitosis of S-phase cells; rather, the cells progressed to G2 before undergoing mitosis. These effects were observed at noncytotoxic concentrations of UCN-01 that alone had no effect on cell cycle passage. Furthermore, the same concentrations of UCN-01 that resulted in abrogation of the cisplatin-induced G2 arrest also enhanced cisplatin-induced cytotoxicity, as determined by a colony formation assay. UCN-01 enhanced cisplatin cytotoxicity up to 60-fold and reduced by 3-fold the concentration of cisplatin required to kill 90% of the cells. The concentrations of UCN-01 required for this enhancement have been shown to be well tolerated in animal models, suggesting that this combination may represent an effective strategy for enhancing cisplatin-based chemotherapeutic regimens.  相似文献   

10.
A new recombinant adenovirus carrying a wild-type p53 gene (AxCAp53) was developed and the combination effect of p53 gene transfer and cis-diamminedichloroplatinum (II) (CDDP) was examined in an ovarian cancer cell line, SK-OV-3, with deletion of the p53 gene. AxCAp53 showed a high efficiency of gene transduction and increased sensitivity to CDDP in the SK-OV-3 cells. It was found that the sensitivity of the cells to CDDP correlated with the amount of infectious units of virus per cell of AxCAp53 which correlated with p53 protein expression. The results suggest that the combination of CDDP and AxCAp53 may be a potential strategy for the therapy of CDDP-resistant ovarian cancer.  相似文献   

11.
In vitro and in vivo data have demonstrated that virus-mediated p53 gene transfer can induce active cell death and lung tumor regression. In contrast, the therapeutic potential of bax, another apoptosis-inducing gene, has not been described. We compared p53 and bax cytotoxic effects by transient transfection of an average of 25 +/- 5% of the H-322 and H-358 bronchioloalveolar carcinoma cell lines in vitro. Under these conditions, bax expression killed 70 to 90% of the transfected cells whereas p53 killed only 40% of them. The killing activity of both genes involved apoptosis, as shown by TUNEL staining. Surprisingly, BrdU incorporation indicated that the cells that did resist Bax toxicity were blocked in the pre-S phase of the cell cycle, a result expected for p53 only. In vivo, repeated injections of naked DNA encoding Bax or p53 inhibited the growth of 4-mm preestablished H-322 tumors in nude mice. Growth retardation only, and not inhibition, was observed in H-358, a poorly transfectable and rapidly growing tumor. These results indicate that Bax and p53 share a similar, strong antitumor activity in vivo, even if the former is a more potent inducer of apoptosis in vitro.  相似文献   

12.
Okadaic acid (OA) is a serine/threonine protein phosphatase inhibitor and has been shown to induce apoptosis in a number of different tumor cell lines, including human breast carcinoma (HBC) cells. The molecular basis of OA-induced apoptosis remains to be investigated. Here, we demonstrate that the OA concentration that inhibits only protein phosphatase 1 and 2A was sufficient to induce apoptosis in HBC cells. In MCF-7 cells, the OA-induced apoptosis was coupled with the overexpression of endogenous p53, p21Waf1/Cip1, and Bax proteins, whereas the Rb protein levels were decreased. OA also induced apoptosis and concomitantly enhanced the p21Waf1/Cip1 and Bex levels in human papilloma virus protein E6-transfected variants of MCF-7 cells, in which p53 function had been disrupted. OA, by contrast, had no effect on the levels or the subcellular localization of Gadd45 and Bcl2 proteins in either wild-type of E6-transfected MCF-7 cells. Bcl-xL, Bcl-xS, and Bak levels were also unchanged after OA treatment in both cell types. OA-induced apoptosis and its effect on the expression of the above molecular markers occurred in the absence of any detectable changes in the cell cycle phase distribution. On the basis of our findings, we conclude the following: (a) OA-induced apoptosis in HBC cells occurs independently of cell cycle arrest; (b) the wild-type p53 function is not an absolute prerequisite for OA-induced cell death; and (c) OA-induced apoptosis is associated with up-regulation of endogenous p21Waf1/Cip1 and Bax protein levels.  相似文献   

13.
14.
The down-regulation of apoptosis may be an essential mechanism for tumour cell expansion in slowly proliferating tumours such as multiple myeloma. We studied eight myeloma cell lines for the presence of Bcl-2, which inhibits apoptosis, of Bax, which counteracts Bcl-2, of Bcl-x(L) and Bcl-x(S), which act in an anti- and pro-apoptotic fashion, respectively, and of Apo-1/Fas, which induces programmed cell death, when activated by the Apo-1/Fas ligand or the relevant monoclonal antibody (mab). All cell lines constitutively expressed homogenous amounts of Bcl-2, but displayed different amounts of Bax and Bcl-x proteins. The Apo-1/Fas antigen could be detected in seven out of eight myeloma lines, but expression levels varied considerably. The relative expression levels of Apo-1/Fas correlated with that of Bax, but not with that of Bcl-2 or Bcl-x subtypes. Furthermore, the effectiveness of the Apo-1/Fas mab was associated with the relative expression levels of the Apo-1/Fas and with that of the Bax antigen, but not with that of the Bcl-2 and Bcl-x antigens. We further showed that wild-type p53 function is not required for Apo-1/Fas-induced apoptosis, nor is it necessary for the expression of Bax or Apo-1/Fas antigens in myeloma. In conclusion, our results suggest a p53-independent co-regulation of Apo-1/Fas and Bax, as well as a role for Bax in Apo-1/Fas-induced apoptosis in myeloma.  相似文献   

15.
It is now generally accepted that massive neuronal death due to oxidative stress is a regular feature of brains in neurodegenerative diseases. However, much less attention has been given to the death of glial cells. In this study, we examined p53-sensitive apoptosis of cells by using human glioblastoma A172 cells and p53-deficient mouse astrocytes. In human A172 cells, hydrogen peroxide (H2O2) caused cell death in a time- and concentration-dependent manner, accompanied by nucleosomal DNA fragmentation and chromatin condensation. After treatment with H2O2, p53 protein was highly expressed and protein levels of Bak, p21WAF1/CIP1 and GADD45 were also enhanced. However, the protein levels of Bcl-2 and Bax did not change. On the other hand, primary cultured astrocytes from p53-deficient mouse brain grew faster than wild-type and heterozygous astrocytes. In addition, p53-deficient astrocytes were more resistant to H2O2-induced apoptosis than wild-type and heterozygous astrocytes. These results suggest that glial proliferation and the repair of damaged DNA may be regulated by p53-induced p21WAF1/CIP1 and GADD45, and that glial apoptosis caused by oxidative stress may be mediated by p53-induced Bak.  相似文献   

16.
This project was undertaken to study the survival properties of various prostate cells, including normal (NHP), BPH (benign prostate hyperplasia), primary carcinoma (PCA), and metastatic prostate cancer cells (LNCaP, PC3, and Du145), in the absence of trophic factors. Cell proliferation and cell death were quantitated by enumerating the number of live cells using MTS/PMS kit and of dead (apoptotic) cells using 4',6-diamidino-2-phenylindole dihydrochloride nuclear staining. These cells demonstrated an overall survivability in the order of BPH < NHP < LNCaP < PC3 < PCA < Du145. Upon growth factor deprivation, NHP/BPH cells rapidly underwent apoptosis, leading to a decreased number of live cells. PCA/PC3/Du145 cells, in contrast, demonstrated an initial phase of aggressive growth during which apoptosis rarely occurred, followed by a "plateau" phase in which cell loss by apoptosis was compensated by cell proliferation, followed by a later phase in which apoptosis exceeded the cell proliferation. LNCaP cells demonstrated survival characteristics between those of NHP/BPH and PCA/PC3/Du145 cells. We concluded that the increased survivability in prostate cancer cells results from enhanced cell proliferation as well as decreased apoptosis. The molecular mechanisms for evasion of apoptosis in prostate cancer cells were subsequently investigated. Quantitative Western blotting was used to examine the protein expression of P53 and P21WAF-1, Bcl-2 and Bcl-X(L) (anti-apoptotic proteins), and Bax, Bak, and Bad (proapoptotic proteins). The results revealed that, upon trophic factor withdrawal, NHP and BPH cells upregulated wild-type p53 and proapoptotic proteins Bax/Bad/Bak and down-regulated the expression of P21. Furthermore, NHP and BPH cells endogenously expressed little or no Bcl-2. In sharp contrast, prostate cancer cells expressed nonfunctional P53 and various amounts of Bcl-2 proteins. Upon deprivation, these cancer cells up-regulated P21 and Bcl-2 and/or BclX(L), lost response to withdrawal-induced up-regulation of Bax/Bad/Bak or decreased or even completely lost Bax expression and expressed some novel proteins such as P25 and P54/55 complex. These data together suggest that prostate cancer cells may use multiple molecular mechanisms to evade apoptosis, which, together with increased proliferation, contribute to extended survivability of prostate cancer cells in the absence trophic factors.  相似文献   

17.
UCN-01 (7-hydroxyl-staurosporine) was originally isolated as a Ca2+- and phospholipid-dependent protein kinase C selective inhibitor and now is being developed as an anticancer agent. Results from our and other laboratories have suggested that UCN-01 induces preferential G1-phase accumulation in several human tumor cell lines tested. To elucidate this mechanism, we examined the effects of UCN-01 on several cell cycle-regulatory proteins critical for G1-S-phase transition in p53-mutated human epidermoid carcinoma A431 cells. After 24 h exposure at around 50% growth-inhibitory concentrations (IC50s), 260 and 520 nM, UCN-01 induced the accumulation of pRb (the dephosphorylated retinoblastoma protein form). The protein expression of cyclin A but not cyclin E was markedly reduced and that of cyclin D1 was partially reduced under the same condition. UCN-01 also showed the concentration-dependent inhibitions of the activity of cyclin-dependent kinase 2 (CDK2) using histone H1 and pRb as substrates in vitro (IC50, 530 and 640 nM, respectively). In addition, CDK2 activities of the cells pretreated with UCN-01 for 24 h at 260 and 520 nM were markedly inhibited, giving IC50s of far less than 260 nM. When the same cell lysates were analyzed by Western blotting for CDK2, the lower band (e.g., active and phosphorylated CDK2) was remarkably reduced, in accordance with the reduced activity. Furthermore, UCN-01 induced the expression of the CDK inhibitor p21 protein and its complex formation with CDK2 after 24 h exposure at 260 and 520 nM, whereas the expression level was very low or undetectable in untreated or DNA-damaged cells. The increase of p21 mRNA levels was also induced under the same condition. UCN-01 further increased luciferase activities in A431 cells transiently transfected with p21 promoter-luciferase reporter plasmid after 24 h exposure at 260 and 520 nM. UCN-01 also increased the expression of the CDK inhibitor p27 protein after 24 h exposure at 260 and 520 nM. These results suggest that G1-phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitors p21 and p27.  相似文献   

18.
Somatostatin (SST) exerts direct antiproliferative effects in tumor cells, triggering either growth arrest or apoptosis. The cellular actions of SST are transduced through a family of five distinct somatostatin receptor subtypes (SSTR1-5). Whereas growth inhibition has been reported to follow stimulation of protein tyrosine phosphatase via SSTR2 or inhibition of Ca2+ channels via SSTR5 in heterologous expression systems, the subtype selectivity for signaling apoptosis has not been investigated. The tumor suppressor protein p53 and the protooncogene product c-Myc regulate cell cycle progression (growth factors present) or apoptosis (growth factors absent). The p53-induced G1 arrest requires induction of p21, an inhibitor of cyclin-dependent kinases, whereas apoptosis requires induction of Bax. c-Myc is capable of abrogating p53-induced G1 arrest by interfering with the inhibitory action of p21 on cyclin-dependent kinases. We have, therefore, investigated the regulation of p53, p21, c-Myc, and Bax and cellular apoptosis in relation to cell cycle progression in CHO-K1 cells stably expressing individual human SSTR1-5. We demonstrate that apoptosis is signaled uniquely through human SSTR3 and is associated with dephosphorylation-dependent conformational change in wild-type (wt) p53 as well as induction of Bax. The induction of wt p53 occurs rapidly and precedes the onset of apoptosis. We show that the increase in wt p53 is not associated with the induction of p21 or c-Myc when octreotide-induced apoptosis becomes evident, suggesting that such apoptosis does not require G1 arrest and is not c-Myc dependent. These findings provide the first evidence for hormonal induction of wt p53-associated apoptosis via G protein-coupled receptor in a subtype-selective manner.  相似文献   

19.
Susceptibility of a tumor cell to undergo chemotherapy-induced apoptosis appears to be dependent upon the balance of proapoptotic and survival factors that are expressed within any given cell. We have chosen to evaluate how expression of several of these proteins influences chemosensitivity of a panel of 10 pediatric tumor cell lines chosen from three tumor histiotypes: neuroblastoma, rhabdomyosarcoma, and pediatric glial tumors. The proteins evaluated were p53 and six members of the Bax/Bcl-2 family: three proapoptotic proteins (Bax, Bak, and Bcl-xS) and three survival factors (Bcl-2, Bcl-xL, and Mcl-1). We investigated whether there was any relationship between endogenous expression of these proteins and chemosensitivity (or resistance) to three chemotherapeutic agents that directly damage DNA (doxorubicin, actinomycin D, and topotecan) and a mitotic spindle poison (vincristine). Even though exogenous overexpression of wild-type p53 has been associated with a chemosensitive phenotype in several model systems we demonstrated no such relationship in these studies. In addition, expression levels of Bcl-2, Bcl-xL, Bcl-xS, Bak, or Mcl-1 did not correlate with sensitivity or resistance to the four drugs. However, there was a statistically significant correlation between endogenous levels of Bax protein and sensitivity to both doxorubicin and actinomycin D. We conclude that even though many proteins such as p53 and Bcl-2 have been shown to influence drug response when exogenously overexpressed in model systems, in unmodified cell lines endogenous protein levels may not generate the same results. We have demonstrated that endogenous Bax expression was the only protein found to be associated with chemosensitivity across the three different tumor histiotypes and propose that analysis of Bax may be a more useful prognostic indicator for tumor response to therapy than either p53 or Bcl-2.  相似文献   

20.
The WAF1/p21 gene product is an inhibitor of cyclin-dependent kinases which can be induced by the tumor suppressor p53 and mediate some of its effects, or function in p53-independent pathways of cell cycle regulation. Although a potential tumor suppressor gene, WAF1/p21 is expressed in bladder cancer. To elucidate the function of p21 in tumor cells we have investigated in urothelial carcinoma cell lines: i) WAF1/p21 mRNA and protein expression, ii) the biological effects of p21 overexpression or down-regulation and (iii) whether p21 can be induced by p53. WAF1/p21 mRNA levels examined in four cell lines were comparable to bladder mucosa. One cell line, HT1376, failed to express p21 protein due to a frame shift mutation. Overexpression of WAF1/p21 cDNA inhibited clone formation in three cell lines, whereas transfection with antisense WAF1 increased clone sizes and numbers. WAF1 sense clones showed diminished cell proliferation compared to the parental cell line. Apoptosis- induced wild-type p53 was not inhibited by overexpression of antisense WAF1/p21. In a cell clone derived from line VMCub1 by stable transfection with wild-type p53 under the control of a metallothionein promotor, p21 was induced along with p53 upon activation of the promoter with zinc chloride. This induction was accompanied by a decrease in cell proliferation but by little apoptosis. These data suggest that p21 inhibits proliferation in a p53-dependent or independent manner but does not mediate p53-induced apoptosis in urothelial carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号