首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
研究了采用溶液法以烟气脱硫石膏制备α-半水石膏的工艺.结果表明,反应温度、pH值、盐溶液浓度、固液比等是影响烟气脱硫石膏脱水速度的主要因素,溶液pH值还影响α-半水石膏的形状;盐溶液浓度增大有利于α-半水石膏的生成,且在半水阶段停留时间长.在反应温度为110℃、pH值为6、盐溶液浓度为25%、固液比为1:(4~8)时,...  相似文献   

2.
以磷石膏为原料,采用常压盐溶液法制备α-高强半水石膏。通过控制反应温度、复合无机盐浓度、pH值和固液比,可以得到晶型为短柱状、长径比为1.4的半水石膏,其绝干抗压强度可达到80 MPa。该高强半水石膏与磷矿尾砂通过控制质量比、加水量和缓凝剂制成胶结填充体,其浆料凝结时间60 min,养护5 d抗压强度1.5 MPa,满足矿场强度要求。在高强半水石膏中加入一定量的发泡剂泡沫,可制得干密度450 kg/m~3、强度1.0MPa的门芯板。根据不同的空隙度,制作不同的模具,可以得到不同密度与强度的空心石膏砖,满足不同的应用需求。  相似文献   

3.
研究了水热CaCl2溶液中可溶磷对CaSO4·2H2O脱水形成α-半水石膏相以及晶形调控的影响,并从高强α-半水石膏相的晶体生长角度探讨了可溶磷的作用机理。结果表明:在98℃ 24%的水热CaCl2溶液中,pH 的大小是决定二水石膏能否发生脱水相变反应形成α-半水石膏的主要因素;当pH不超过2.0时,可以得到针状的α-半水石膏,加入多元羧酸类媒晶剂NS后,可以得到长径比0.5~3.0的短柱状高强α-半水石膏,抗压强度超过20 MPa;可溶磷的存在可以降低体系的pH,增大α-半水石膏的过饱和度,降低晶体与液相界面的表面自由能,有利于α-HH相的形成;另一方面,酸根离子会影响到α-HH的结晶习性,减弱羧酸类媒晶剂的吸附效果。  相似文献   

4.
金纯  赵辉  江莉莉  任小明  蒋涛 《硅酸盐通报》2015,34(6):1504-1508
利用X射线荧光光谱仪分析了钛白石膏的成分,结果表明其主要成分是CaSO4·2H2O,其杂质主要成分是Fe2O3;采用水热法,以钛白石膏为原料,制备α半水钛白石膏;通过XRD和SEM,对其进行表征;探讨转晶剂和石膏浆料pH值对α半水钛白石膏晶型的影响,以及丁苯胶粉对α半水钛白石膏抗压强度的影响.结果表明,当pH=6,丁苯胶粉添加量为0.9%时,α半水钛白石膏用水量下降到34%,其抗压强度提高到52.8 MPa,提高了101%.  相似文献   

5.
在常压,Ca(NO3) 2-KCl溶液中,以脱硫石膏为原料,研究了聚合物大分子透明质酸转晶剂浓度和pH值对α-半水石膏晶体生长的影响.实验结果表明,pH值为5.5,转晶剂透明质酸浓度为3.0g·L-1时,制备的α-半水石膏为规整度高、分散性好的六边短柱状晶体.α-半水石膏水化硬化浆体力学性能测试显示,浆体抗压强度和抗折强度随着α-半水石膏晶体长径比减小和规整度的增加而逐渐变大,其最大值分别为58.8 MPa和28.5 MPa,属于高强石膏.  相似文献   

6.
以钛白石膏为原料,利用常压盐溶液法制备α-半水钛石膏(α-HHTG)。研究转晶剂配比、悬浮液p H值和浓度对晶体形貌的影响。采用扫描电子显微镜(SEM)观察晶体形貌,X射线衍射仪(XRD)对制得的α-半水钛石膏进行表征。结果表明:在以氯化钠为盐介质,反应时间为4h,反应温度维持在沸点附近,转晶剂硫酸铝质量浓度为0.6 Wt%、柠檬酸钠0.28 Wt%,悬浮液p H值为4.1、浓度20 Wt%时,α-半水钛石膏晶体形貌最佳,呈短柱状,长径比约为1∶1。  相似文献   

7.
硫酸浓度对烟气脱硫石膏制备α-半水石膏的影响   总被引:2,自引:0,他引:2  
采用常压盐溶液法从烟气脱硫石膏中制备具有理想形态的高强α-半水石膏,并借助扫描电镜、DTA等测试手段分析硫酸浓度对α-半水石膏结晶形态转化的影响。研究表明:在温度、盐溶液种类、浓度、pH值、结晶习性改良剂和稳定剂的种类及掺量不变的前提下,硫酸浓度为15%时可加快α-半水石膏的生成且晶体形态为致密短柱状。  相似文献   

8.
以工业副产钛石膏为原料,氢氧化钙饱和溶液为溶剂,七水硫酸镁为晶型助长剂,采用水热法制备α-半水硫酸钙晶须。研究了碱性环境下反应温度、反应时间、浆料固液比、晶型助长剂用量、体系总体积以及体系pH值对α-半水硫酸钙晶须产率及形貌的影响,分析了晶须的生长机理。结果表明在碱性水热环境中,钛石膏先转变为α-半水硫酸钙,再逐渐依附于既有晶须生长,形成粗大的晶须,在较优的工艺条件下,α-半水硫酸钙晶须产率可达71.6%,晶须表面光滑,长径比为70。  相似文献   

9.
磷石膏和脱硫石膏是堆存量最大的工业固废石膏,将其转化为半水石膏作为建筑胶凝材料是最主要的资源化利用途径。采用蒸压法制备α-半水石膏,以磷石膏和脱硫石膏为原料,天然石膏作为对照组,探究了十二烷基苯磺酸钠(SDBS)、硫酸铝[Al2(SO4)3]、复合转晶剂CM(硫酸铝、柠檬酸钠)对α-半水石膏晶体形貌的调控作用及其强度的影响。结果表明,于135℃下蒸压5 h,3种石膏均能稳定制备α-半水石膏,3种转晶剂对于半水石膏物相组成无影响,同时0.4%(质量分数)CM能够有效降低晶体的长径比;通过t检验法检测,转晶剂对脱硫石膏、天然石膏制备的α-半水石膏的抗压强度有显著性增强作用,α-半水石膏的抗压强度增加2倍以上,分别为13.59 MPa和17.45 MPa。而转晶剂对以磷石膏为原料制备的α-半水石膏的强度没有明显作用。脱硫石膏和天然石膏在0.4%CM的调控下晶体长径比降低,抗压、抗折强度显著提升,而磷石膏由于其杂质影响,转晶剂的作用效果不明显,研究结果可为工业石膏的工业化生产提供一定的理论指导。  相似文献   

10.
以经盐溶液预处理的磷石膏为原料,以乙二胺四乙酸(EDTA)和顺丁烯二酸酐为复合转晶剂,采用蒸压法制备α半水石膏。借助扫描电镜(SEM)、X射线衍射(XRD)分析研究了复合转晶剂掺量、pH、蒸压温度对生成α半水石膏的晶体形貌、物相组成的影响。研究结果表明,复合转晶剂中EDTA的最佳掺量(质量分数)为0.4%、顺丁烯二酸酐的最佳掺量(质量分数)为0.3%,溶液最佳pH为7.5,最佳蒸压温度为140 ℃。在此条件下制得的α半水石膏结晶形态最好,呈短柱状,长径比接近1∶1。  相似文献   

11.
通过分析磷石膏蒸压后样品的物相组成、相对结晶度、烘干抗压强度、微观形貌,研究了蒸压温度、保温时间、液固比、杂质等因素对磷石膏蒸压制备α-半水石膏的影响。结果表明:磷石膏蒸压后所得样品的烘干抗压强度与α-半水石膏晶体的相对结晶度呈正相关关系;在蒸压温度为130℃、保温时间为3~5 h、液固质量比为0.25条件下,所得α-半水石膏的相对结晶度高、烘干抗压强度大、晶体微观形貌完整且长径比小;磷石膏中的杂质会对蒸压样品的力学强度产生影响,将磷石膏水洗处理后,在蒸压温度为130℃、保温时间为3 h、液固质量比为0.25条件下,可制得2 h抗折强度为7.3 MPa、烘干抗压强度为32.8 MPa的α-半水石膏,该α-半水石膏符合JC/T 2038—2010《α型高强石膏》α30强度等级的要求。  相似文献   

12.
采用常压盐溶液法制备α-半水脱硫石膏,研究转晶剂柠檬酸在不同pH值条件下对α-半水脱硫石膏晶体形貌的影响.从产物晶体形貌、脱水速率、液相离子浓度等角度,研究了溶液pH值对柠檬酸调晶效果的影响规律.结果表明:柠檬酸调晶效果非常显著,在0.01%的低掺量下,α-半水脱硫石膏由棒状转变为长径比接近1∶ 1的短柱状晶体.pH值是影响其调晶效果最敏感的因素之一,在pH=3.5~4.8之间的酸性范围内,有利于结晶习性改良.  相似文献   

13.
陈平  田宇  胡成 《无机盐工业》2020,52(10):130-134
为了解决脱硫石膏的大量堆存对环境造成的潜在危害,同时提高脱硫石膏的附加值,采用常压盐溶液水热法以电厂脱硫石膏为原料探究α-半水石膏的最佳合成工艺,重点研究了盐溶液种类及浓度对α-半水石膏的合成过程、合成产物组成及结构的影响。结果表明:在氯化钙、氯化镁盐溶液中,由于同离子效应和硫酸镁离子对的形成,导致半水石膏的形成过程受阻。较高浓度氯化钾和氯化钠盐溶液可使二水石膏发生转晶,其中氯化钾会致使半水石膏过度脱水生成无水钾石膏,氯化钠盐溶液可以使二水石膏转变为半水石膏并维持较长时间,通过比较得出最佳合成工艺为氯化钠溶液质量分数为15%、体系反应温度为95 ℃、固液质量比为1∶4、搅拌速率为150 r/min、合成时间为3 h,可以制得长径比约为5∶1的六方短柱状α-半水石膏。  相似文献   

14.
α-半水高强度石膏生产新工艺   总被引:8,自引:0,他引:8  
本工艺将α-半水石膏生产中的“水溶液法”和“蒸汽加压法”的优点巧妙地结合起来,用于二水石膏块矿的加工生产,形成了具有特色的“汽液结合法”工艺。工艺中利用“闪蒸原理”进行负压干燥,媒晶剂溶液循环使用,媒晶剂溶液的余热预热生料,使得生产能力及产品质量大为提高,能耗大幅度降低。  相似文献   

15.
以磷石膏、脱硫石膏为原料,采用半干法工艺实现α-半水石膏粉千克量级制备试验,采用SEM场发射扫描电镜和马尔文激光粒度仪分析α-半水石膏粉形貌和粒径分布,对两种α-半水石膏粉物相组成分析和力学性能强度进行对比。结果表明:两种α-半水石膏粉中半水石膏相转化率在90%左右,晶体长径比接近于1,磷石膏基α-半水石膏粉力学性能最佳,其2 h抗折强度2.6 MPa,绝干抗压强度13.6 MPa。计算半干法工艺能耗,与传统煅烧法对比能耗降低约29.5%,工艺简单、绿色化,证明半干法工艺量产制备α-半水石膏粉在工业上可行性,为大规模消耗利用化学石膏提供科学基础。  相似文献   

16.
为消除副产石膏对环境的危害,提高副产石膏的利用价值,采用共沸回流法以工业废酸石膏为原料,经过浆料配制、投加共沸溶剂、转晶反应以及抽滤烘干得到α-半水石膏,并对α-半水石膏的最佳合成工艺进行了探究。通过X射线衍射仪(XRD)、扫描电镜(SEM)对产物进行表征。重点研究了共沸溶剂浓度、温度、固液比、pH对副产石膏的转晶过程、转晶产物组成及结构的影响,并通过单因素实验以及正交实验得到最佳实验条件。结果表明:在共沸溶剂体积分数为70%、转晶温度为120 ℃、固液质量比为1∶6、pH为5、反应时间为3 h时可以制得长径比约为1∶1、抗折强度(2 h)为5.6 MPa、烘干抗压强度为43 MPa的α-半水石膏,满足JC/T 2038—2010《α型高强石膏》α40强度等级。  相似文献   

17.
以脱硫石膏为原料,α-半水石膏与β-半水石膏分别采用蒸压法和煅烧法制得.讨论α-半水石膏的工艺条件,并结合XRD与SEM初步探讨α-半水石膏与β-半水石膏的形成机理.结果表明在α-半水石膏的形成机制是溶解-析晶,β-半水石膏是二水石膏直接脱水.  相似文献   

18.
简述磷石膏制备α-半水石膏和β-半水石膏的机制、生产工艺以及目前的应用领域。以磷石膏为原料制备β-半水石膏,能耗较高,产品强度低,缺乏市场竞争力。以磷石膏为原料制备的α-半水石膏制品更有发展前景,但磷石膏制备α-半水石膏影响因素较多,应根据磷石膏原料成分选择合适的生产方法。  相似文献   

19.
试验以磷石膏为原料,在以正己醇/十六烷基三甲基溴化铵(CTAB)/水构成的反相微乳液体系中制备α型半水石膏,并通过改变CTAB与水的比例(表水比)对晶体微观形貌进行调控,研究了反应温度、反应时间对磷石膏的脱水转化过程以及表水比对所得α型半水石膏晶体微观形貌的影响.结果表明,反相微乳液中磷石膏转化为α型半水石膏的过程需要一定的转化时间,且转晶速率与反应温度成正比.当反应温度为105℃、表水比为1.5时,磷石膏中的二水石膏5h即可完成向α型半水石膏的转化;α型半水石膏晶体尺寸随表水比的增大而减小,表水比从0.5增加到4.5的过程中,α型半水石膏的晶体平均长度由40μm降低至25μm,平均直径由6μm降低至500 nm.  相似文献   

20.
常压KCl溶液中α-半水石膏的脱水过程   总被引:4,自引:1,他引:3  
一般认为,在盐溶液中,亚稳态的α-半水石膏(α-Hemi-hydrated gypgsum,α-Hh9脱水转变为无水石膏(calcium sulfate anhydrite,AH)是直接脱水的过程.研究常压、80~102℃条件下 KCl溶液中α-HH的脱水行为,通过热分析和物相测定阐明α-HH的脱水过程和产物.结果表明KCl溶液中α-HH的脱水过程有2个相转化途径:一个是α-半水石膏→二水石膏(calcium sulfate dihydrate,DH→无水石膏(α→DH→AH)历程;另一个是α-半水石膏→无水石膏(α-HH→AH)历程.α-HH脱水转化为无水石膏的过程伴随有钾石膏的生成.α-HH在KCl溶液中的脱水速率和脱水途径取决于KCl浓度和反应温度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号