首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Structure and properties of malic enzyme from Bacillus stearothermophilus   总被引:3,自引:0,他引:3  
The malic enzyme (EC 1.1.1.38) gene of Bacillus stearothermophilus was cloned in Escherichia coli, and the enzyme was purified to homogeneity from the E. coli clone. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, the enzyme catalyzes the decarboxylation of oxalacetate. The enzyme is a tetramer of Mr 200,000 consisting of four identical subunits of Mr 50,000. The pH optima for malate oxidation and pyruvate reduction are 8.0 and 6.0, respectively; and the optimum temperature is 55 degrees C. The enzyme strictly requires divalent metal cations for its activity, and the activity is enhanced 5-7 times by NH4+ and K+. Kinetic study shows that the values of the dissociation constant of the enzyme-coenzyme complex are 77 microM for NAD and 1.0 mM for NADP, indicating that the enzyme has a higher affinity for NAD than for NADP. The nucleotide sequence of the gene and its flanking regions was also found. A single open reading frame of 1434 base pairs encoding 478 amino acids was concluded to be that for the malic enzyme gene because the amino acid composition of the enzyme and the sequence of 16 amino acids from the amino terminus of the enzyme agreed well with those deduced from this open reading frame.  相似文献   

2.
Mitochondria isolated from the heart of the Baltic salmon trout Salmo trutta contain two distinct malic enzymes. One of these enzymes (NAD-preferring malic enzyme) catalyses the oxidative decarboxylation of malate in the presence of either NAD or NADP. The specific activity with NAD was six times that with NADP as coenzyme. The second enzyme is specific for NADP. These two malic enzymes have been separated by: ion exchange chromatography of DEAE-Sephacel, affinity chromatography on 2',5'ADP-Sepharose 4B, gel filtration on Sephacryl S-300 and polyacrylamide gel electrophoresis. The mol. wts of the two native malic enzymes determined by gel filtration were found to be 280,000 and 190,000 for NAD-preferring and NADP-specific malic enzyme, respectively. Chromatofocusing revealed the isoelectric points of the two enzymes at pH 5.45 and 5.85 for NAD-preferring and NADP-specific malic enzyme, respectively.  相似文献   

3.
Malic enzyme (S)-malate: NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40) purified from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4, catalyzed the metal-dependent decarboxylation of oxaloacetate at optimum pH 7.6 at a rate comparable to the decarboxylation of L-malate. The oxaloacetate decarboxylase activity was stimulated about 50% by NADP but only in the presence of MgCl2, and was strongly inhibited by L-malate and NADPH which abolished the NADP activation. In the presence of MnCl2 and in the absence of NADP, the Michaelis constant and Vm for oxaloacetate were 1.7 mM and 2.3 mumol.min-1.mg-1, respectively. When MgCl2 replaced MnCl2, the kinetic parameters for oxaloacetate remained substantially unvaried, whereas the Km and Vm values for L-malate have been found to vary depending on the metal ion. The enzyme carried out the reverse reaction (malate synthesis) at about 70% of the forward reaction, at pH 7.2 and in the presence of relatively high concentrations of bicarbonate and pyruvate. Sulfhydryl residues (three cysteine residues per subunit) have been shown to be essential for the enzymatic activity of the Sulfolobus solfataricus malic enzyme. 5,5'-Dithiobis(2-nitrobenzoic acid), p-hydroxymercuribenzoate and N-ethylmaleimide caused the inactivation of the oxidative decarboxylase activity, but at different rates. The inactivation of the overall activity by p-hydroxymercuribenzoate was partially prevented by NADP singly or in combination with both L-malate and MnCl2, and strongly enhanced by the carboxylic acid substrates; NADP + malate + MnCl2 afforded total protection. The inactivation of the oxaloacetate decarboxylase activity by p-hydroxymercuribenzoate treatment was found to occur at a slower rate than that of the oxidative decarboxylase activity.  相似文献   

4.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

5.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3.) of the extreme thermophilic archaebacterium Sulfolobus solfataricus was purified to homogeneity by (NH4)2SO4 fractionation, anion-exchange chromatography and affinity chromatography on 5'-AMP-Sepharose. The purified native enzyme had a Mr of about 270,000 and was shown to be a hexamer of subunit Mr of 44,000. It was active from 30 to 95 degrees C, with a maximum activity at 85 degrees C. No significant loss of enzyme activity could be detected, either after incubation of the purified enzyme at 90 degrees C for 60 min, or in the presence of 4 M urea or 0.1% SDS. The enzyme was catalytically active with both NADH and NADPH as coenzyme and was specific for 2-oxoglutarate and L-glutamate as substrates. With respect to coenzyme utilization the Sulfolobus solfataricus glutamate dehydrogenase resembled more closely the equivalent enzymes from eukaryotic organisms than those from eubacteria.  相似文献   

6.
Two of the three metabolic subtypes of species utilizing C4-pathway photosynthesis are defined by high activities of either NADP malic enzyme (NADP malic enzyme type) or a coenzyme A (CoA)- and acetyl-CoA-activated NAD malic enzyme (NAD malic enzyme type). These enzymes function to decarboxylate malate as an integral part of the photosynthetic process. Leaves of NADP malic enzyme-type species also contain significant NAD-dependent malic enzyme activity. The purpose of the present study was to examine the nature and photosynthetic role of this activity. With Zea mays, this NAD-dependent activity was found to vary widely in fresh leaf extracts. Incubating extracts at 25 °C resulted in a disproportionate increase in NAD activity so that the final ratio of NADP to NAD activity was always about 5. Strong evidence was provided that the NADP and NAD malic enzyme activities in Z. mays extracts were catalyzed by the same enzyme. These activities remained associated during purification and were coincident after polyacrylamide gel electrophoresis. The pH optimum for NAD-dependent activity was about 7.1, compared with 8.3 for NADP malic enzyme activity. Other properties of the NAD-dependent activity are described, a particularly notable feature being the inhibition of this activity by less than 1 μm NADP and NADPH. Evidence is provided that the NADP malic enzyme of several other NADP malic enzyme-type C4 species also has associated activity toward NAD. We concluded that the NAD-dependent malic enzyme activity would have no significant function in photosynthesis.  相似文献   

7.
Glucose dehydrogenase has been purified to homogeneity from cell extracts of the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme utilizes both NAD+ and NADP+ as coenzyme and catalyses the oxidation of several monosaccharides to the corresponding glyconic acid. Substrate specificity and oxidation rate depend on the coenzyme present; when NAD+ is used, the enzyme binds and oxidizes specifically sugars presenting equatorial orientation of hydroxy groups at C-2, C-3 and C-4. The Mr of the native enzyme is 124,000 and decreases to about 60,000 in the presence of 6 M-guanidinium chloride and to about 30,000 in the presence of 5% (w/v) SDS. The enzyme shows maximal activity at pH 9, 77 degrees C and 20 mM-Mg2+, -Mn2+ or -Ca2+ and is fairly stable in the presence of chaotropic agents and water-miscible organic solvents such as methanol or acetone.  相似文献   

8.
Acetylpyridine NADP replaced NADP in promoting the Mn2+ ion-requiring mitochondrial "malic" enzyme of Hymenolepis diminuta. Disrupted mitochondria displayed low levels of an apparent oxaloacetate-forming malate dehydrogenase activity when NAD or acetylpyridine NAD served as the coenzyme. Significant malate-dependent reduction of acetylpyridine NAD by H. diminuta mitochondria required Mn2+ ion and NADP, thereby indicating the tandem operation of "malic" enzyme and NADPH:NAD transhydrogenase. Incubation of mitochondrial preparations with oxaloacetate resulted in a non-enzymatic decarboxylation reaction. Coupling of malate oxidation with electron transport via the "malic" enzyme and transhydrogenase was demonstrated by polarographic assessment of mitochondrial reduced pyridine nucleotide oxidase activity.  相似文献   

9.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

10.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

11.
NADP+ -dependent malic enzyme of Rhizobium meliloti.   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.  相似文献   

12.
L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.  相似文献   

13.
Glucose dehydrogenase was purified to homogeneity from the thermoacidophilic archaebacterium Thermoplasma acidophilum. The enzyme is a tetramer of polypeptide chain Mr 38,000 +/- 3000, it is catalytically active with both NAD+ and NADP+ cofactors, and it is thermostable and remarkably resistant to a variety of organic solvents. The amino acid composition was determined and compared with those of the glucose dehydrogenases from the archaebacterium Sulfolobus solfataricus and the eubacteria Bacillus subtilis and Bacillus megaterium. The N-terminal amino acid sequence of the Thermoplasma acidophilum enzyme was determined to be: (S/T)-E-Q-K-A-I-V-T-D-A-P-K-G-G-V-K-Y-T-T-I-D-M-P-E.  相似文献   

14.
15.
Kinetic properties of purified chloroplast isoenzyme of the "malic" enzyme from corn leaves were studied. The enzyme had optimum activity at pH 8.0 and 36 degrees C. Under standart conditions the Michaelis constants for the "malic" enzyme with Mn2+ as cofactor are 0.091 mM for malate and 0.04 mM for NADP. In case of Mg2+ as cofactor they are 0.66 and 0.02 mM respectively. Respective Km values for the cofactors Mn2+ and Mg2+ are 0.018 and 0.091 mM. The activity of the "malic" enzyme was inhibited by reduced NADP and NAD, ATP, ADP, fructose-1,6-diphosphate, oxaloacetic, oxalic, glyoxylic, glycolic and alpha-ketoglutaric acids, as well as by phosphate anions and pyrophosphate. The inhibitory effect of all metabolites and ions is more pronounced in case of Mn, rather than Mg, used as cofactors for the reaction. A possibility of metabolic regulation of NADP-"malic" enzyme activity in the leaves of C4-plants, is discussed.  相似文献   

16.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

17.
A sonicate of Corynebacterium flaccumfaciens AHU-1622 had the highest NAD+ kinase activity (1.22 mU/mL culture broth) of the strains of bacteria we investigated. This enzyme was thermostable, with activity maintained at 50 degrees C for 1 h. This treatment inactivated phosphatase activity. Resting cells of the bacterium also had NAD+ kinase activity when treated at 60 degrees C for 30 min with 0.2% Triton X-100. NADP+ production was achieved using 8 mumol NAD+, 8 mumol ATP, 16 mumol MgCl2, 1.6 mumol NaN3, and 12 mU NAD+ kinase (0.1 g of permeabilized wet cells) in 2 mL of 0.1 M phosphate buffer, pH 7.5. The conversion ratio of NADP+ from NAD+ was 75% after 10 h of incubation at 50 degrees C, and the amount of accumulated NADP+ was 3 mumol/mL of reaction mixture. The NAD+ kinase activity of the permeabilized cells was stable and did not decrease after repeated use.  相似文献   

18.
The NAD(P)-dependent malic enzyme from human term placental mitochondria was purified 108-fold with a final yield of 72% and specific activity of about 2 mumol per minute per milligram protein. The final preparation was completely free of fumarase, malic, and lactic dehydrogenases. Divalent cations were required for NAD(P)-dependent malic enzyme activity, Mn2+ and Co2+ were by far more effective activators than Mg2+ and Ni2+, whereas the reaction did not proceed in the presence of Ca2+. The optimum pH with NAD and NADP as coenzymes was at around 7.1 and 6.4, respectively. The ratio of the rate of NAD:NADP reduction was 7.4 and 1.3 at pH 7.1 and 6.4, respectively. The enzyme is activated by succinate and fumarate and inhibited by ATP. In the absence of fumarate the Michaelis constants for L-malate and NAD were 2.82 and 0.33 mM; and in the presence of fumarate 1.18 and 0.22 mM, respectively. This study presents the first report showing the purification and kinetic properties of NAD(P)-dependent malic enzyme from human tissue.  相似文献   

19.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

20.
Shikimate 5-dehydrogenase (SKDH; EC 1.1.1.25) catalyzes the reversible reduction of 3-dehydroshikimate to shikimate and is a key enzyme in the aromatic amino acid biosynthesis pathway. The shikimate 5-dehydrogenase gene, aroE, from Archaeoglobus fulgidus was cloned and overexpressed in Escherichia coli. The recombinant enzyme purified as a homodimer and yielded a maximum specific activity of 732 U/mg at 87 degrees C (with NADP+ as coenzyme). Apparent Km values for shikimate, NADP+, and NAD+ were estimated at 0.17+/-0.03 mM, 0.19+/-0.01 mM, and 11.4+/-0.4 mM, respectively. The half-life of the A. fulgidus SKDH is 2 h at the assay temperature (87 degrees C) and 17 days at 60 degrees C. Addition of 1 M NaCl or KCl stabilized the enzyme's half-life to approximately 70 h at 87 degrees C and approximately 50 days at 60 degrees C. This work presents the first kinetic analysis of an archaeal SKDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号