首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
河流生态流量浅论   总被引:2,自引:0,他引:2  
河流生态流量是维持河流健康年关重要的一个方面。文章阐述了河流生态流量的概念、作用、国内外常用的计算方法及保障河流生态流量的措施。  相似文献   

2.
河流梯级水电开发建设会对区域生态环境造成一定的影响,为确保维持生态系统的稳定,就要保障生态流量的下泄。文章以无定河流域三级水电站为例,通过计算确定生态流量,并提出了保障措施。  相似文献   

3.
河流生态流量是维持河流生态系统健康的重要条件。选取湘江(湘潭)作为控制性断面,采用生态流量年内展布法和IHA-RVA法计算河道最小和适宜生态流量,并以Tennant法进行合理性验证。结果表明:最小生态流量为639.6 m~3/s,占多年平均天然流量的32.2%;适宜生态流量为983.4 m~3/s,占多年平均天然流量的49.5%。该方法计算的生态流量结果能够满足河流生态目标的需求,与天然河流年内丰枯变化状态相吻合,计算结果较为合理。研究可为湘江湘潭的水资源管理以及生态系统的保护和恢复提供科学依据。  相似文献   

4.
基于水盐平衡的南通地区河流系统生态需水量研究   总被引:1,自引:1,他引:0  
论述了水盐平衡的概念,从水盐平衡的基本原理出发,探讨了南方地区维持河流水盐平衡的生态需水量计算方法,以此生态需水校核河道整治的断面是否达到水盐平衡的要求。以南通地区的河流系统为例,估算其多年平均维持河流水盐平衡的生态需水量,并据此对河道整治提出了要求。  相似文献   

5.
基于生态系统分析的河道最小生态需水计算方法研究(Ⅰ)   总被引:4,自引:0,他引:4  
研究了河道生态系统的水文与地形子系统的最小生态需水,提出计算河道水体最小生态需水的方法——水文与河道形态分析法,并建立了计算方法体系.水文与河床形态分析法的基本思想是用尽量少的水维持尽量多的河流特征和功能,并将河流特征和功能维持在一定的水平,以维持河流的生命.还研究了水文、地形和生物子系统,提出计算该子系统最小生态需水的方法——生物空间最小需求法.生物空间最小需求法的基本思想是以鱼类为指示生物,从鱼类对生存空间的最小需求来确定最小生态需水.采用上述两种方法计算了淮河流域颍河周口水文站断面的最小生态流量,为7m^3/s,占多年平均天然流量的5.6%.  相似文献   

6.
归纳了洪水期的生态水文效应和生态需水的研究成果,明确了洪水的生态功能包括输送物质和维护河道整体形态,维持河流系统连通性,维持河流系统生境多样性,对物种生命活动传递提示信息等。针对河流系统组成部分的不同保护目标,提出洪水期生态需水研究的重点包括满足河道汛期生态需求的洪水流量阈值、维持湿地生态健康的洪水流量阈值和维持河口生态健康的洪水流量阈值3个方面。通过对满足河道、湿地和河口生态需求的洪水期生态流量阈值的功能和作用分析,明确了3类洪水期生态需水的分析计算方法,可为洪水期生态保护以及实施洪水期生态调度提供参考。  相似文献   

7.
各类计算生态需水量的方法多需要长序列实测的水文或生境资料,无法直接适用于资料短缺的河流。在实测资料短缺的平原河流通顺河武汉段上布置10个典型断面,利用人为设定的多级试算流量来替代长序列实测流量,利用MIKE11软件模拟推求河道典型断面水力参数(河宽、水深、流速和湿周等)随流量的变化关系;在此基础上,依据平原河流滩槽明显的特点,选用水力学法中基于水力参数与流量间相关关系的湿周法和生态水力学法分别计算研究河段的生态需水量。计算结果表明,通顺河武汉段的河道基本形态得以维持和生物基本栖息地得以保障时的生态需水量应为26 m3/s。所提出的计算方案能较好地推求资料短缺地区平原河流的生态需水量,也可为类似河流的生态需水计算提供一定的参考。  相似文献   

8.
针对高度人工化城市河流生态水位和生态流量确定方法不成熟的问题,通过分析高度人工化城市河流特征和生态功能,解析了生态水位和生态流量的内涵,从维持河流连通性、水生生物生境、水质保障、城市景观娱乐功能等维度,提出了一种考虑河流形态、河道水生生物、水质和景观娱乐为要点的实用计算方法。以南京市秦淮河为案例,计算得到了秦淮河上段、秦淮河下段、外秦淮河和秦淮新河4个河段的生态水位分别为6.8 m、6.7 m、6.3 m和6.7 m,生态流量分别为20.8 m~3/s、25.8 m~3/s、26.5 m~3/s和19.1 m~3/s;计算结果介于Tennant标准的"好"和"非常好"之间,表明计算方法合理可信。  相似文献   

9.
河流生态需水量研究综述   总被引:3,自引:1,他引:2  
介绍了河流生态需水量基本概念的衍生过程、河流生态需水量的计算方法以及最新国内外的应用研究进展,讨论了几种常用计算方法如Tennant法、Texas法、生境模拟法以及整体分析法的适应性,总结了目前存在的主要研究问题。由于计算方法种类繁多,计算结果还需要一定的评价标准认可其有效性。最后结合我国水资源合理优化配置问题对今后河流生态需水量的主要研究方向进行了展望。  相似文献   

10.
提出了河流及河口“生态需水量”和“环境需水量”估算和计算方法。生态需水量是协调人与自然的关系,即维持河流不干涸、断流,河口;中淤平衡所需要的基本水量,这样,水生动、植物才可能有一个最低需求的“水环境”;环境需水是协调人与资源的关系,即保证河流水体能达到既定的水环境功能要求的水质标准的所需用水.从而计算需增加的水量:生态和环境需水量构成综合的河北省地表水或河道生态环境需水量。  相似文献   

11.
流域生态环境需水与缺水的快速评估(I):理论   总被引:1,自引:0,他引:1  
为识别生态环境缺水严重的区域和合理评价生态环境用水的配置效果,本文提出了一种新的流域生态环境需水与生态环境缺水快速评估方法。将流域的生态环境需水满足程度定义为,流域“实际生态环境用水”与流域在未受或少受人类活动干扰时的“自然状态条件下的生态环境用水”的接近程度。以土地利用资料为基础,运用层次分析法构建流域生态环境需水特征指标来表征流域生态环境用水的相对大小;借鉴水体生物快速评估法的思想,通过流域单元划分、参照单元选择、参照组构建、参照组匹配、观测值与期望值的比较计算等步骤,可以对不同级别流域的生态环境缺水问题进行深入分析,从而快速识别生态缺水严重区域、预测其生态缺水动态变化,并对生态环境用水配置效果进行评价。  相似文献   

12.
流域生态环境需水与缺水的快速评估(Ⅰ):理论   总被引:1,自引:1,他引:0  
为识别生态环境缺水严重的区域,合理评价生态环境用水的配置效果,本文提出了一种新的流域生态环境需水与生态环境缺水快速评估方法。将流域的生态环境需水满足程度定义为,流域"实际生态环境用水"与流域在未受或少受人类活动干扰时的"自然状态条件下的生态环境用水"的接近程度。以土地利用资料为基础,运用层次分析法构建流域生态环境需水特征指标来表征流域生态环境用水的相对大小;借鉴水体生物快速评估法的思想,通过流域单元划分、参照单元选择、参照组构建、参照组匹配、观测值与期望值的比较计算等步骤,可以对不同级别流域的生态环境缺水问题进行深入分析,从而快速识别生态环境缺水严重区域、预测其生态环境缺水动态变化,并对生态环境用水配置效果进行评价。  相似文献   

13.
计算黄河干流生态环境需水Tennant法的改进及应用   总被引:3,自引:0,他引:3  
为弥补Tennant法不能反映河流多沙特性和流量季节特性的不足,本文在原Tennant法的百分比系数中引入了环境比降和季节系数,对Tennant法进行改进。改进后的Tennant法应用到黄河下游三门峡至利津等站。应用结果表明:改进后的Tennant法能够保障平原区河道的河流形态及河流生物栖息地存在和发展;同时,改进后Tennant法求得的流量更好地体现了研究河段流量丰枯的季节性;结果印证了黄河是主要靠降水补给的河流,其生态环境和降水具有丰枯同步的相关性。改进后的Tennant法能适应地形多变、流量季节性变化的河流,拓宽了Tennant法的适用范围。该文的研究为Tennant法适用于有特殊要求河流的改进提供了一个新的思路。  相似文献   

14.
针对目前各类河道内生态需水模型缺少不确定性方面的研究,本文将模糊数引入到河道内生态需水估算方法中,建立了模糊生态流速和模糊生态水力半径的概念。以抛物线型过水断面河道为例,在扩展原理的基础上,建立了流量与模糊生态流速、模糊生态水力半径的具体函数关系,提出了基于梯形模糊数的不确定性河道内生态需水模型,设计了算法流程,以杜柯河壤塘站为例进行了实例研究,计算并给出了不确定性河道内生态需水量的表达结果,还利用Tennant法对所建模型的实用性进行了验证,最后对计算结果的表达形式做了分析和解释。  相似文献   

15.
流域生态用水与需水研究   总被引:12,自引:0,他引:12  
水资源不合理利用导致了严重的生态环境问题,流域生态用水与需水研究对流域水资源配置具有重要意义,应用水量平衡原理,提出计算不同频率流域生态用水与需水方法,并以海河流域为例,计算了不同保证率时的生态用水量与需水量,主要结论为,水循环与水量平衡理论是研究流域生态需水的基本原理;生态用水等于水资源总量减去生活生产耗水量;根据不同水资源条件下年生态需水量进行生态配水。  相似文献   

16.
海滦河流域河流系统生态环境需水量计算   总被引:14,自引:0,他引:14  
从水资源开发利用中的生态环境问题出发,探讨河流系统生态环境需水量的内涵,指出生态环境需水量是指地表水体维持特定的生态环境功能所必须蓄存和消耗的最小水量。在这一概念的基础上,构建计算河流系统生态环境需水量的理论基础。以海滦河流域为例,分河流基本生态环境需水量、河流输沙排盐水量和湖泊洼地生态环境需水量三部分,概算了区域河流系统的生态环境需水量。计算结果表明,海滦河流域生态需水量为124×108m3,约占流域地表径流总量的54%。若海滦河流域水资源开发率超过40%时,就会对生态环境造成严重影响。  相似文献   

17.
清潩河流域(许昌段)水生态环境功能分区指标体系构建   总被引:4,自引:0,他引:4  
为了满足流域"分级、分类、分区、分期"的精细化管理需求,迫切需要构建指标体系并开展水生态环境功能分区研究。以清潩河流域(许昌段)为例,应用频度分析、理论分析、相关分析和层次分析法,综合考虑自然地理和人为因素,从水环境、水资源和水生态特征出发,构建清潩河流域(许昌段)水生态环境功能分区指标体系,包括高程、流域面积、河流蜿蜒度、河网密度、斑块平均形状指数、人口密度及人口增长率7个分区指标,其权重分别为0. 146、0. 234、0. 110、0. 099、0. 111、0. 159和0. 141。应用该指标体系并结合GIS技术将清潩河流域(许昌段)划分为5个水生态环境功能区,并针对各分区特点提出差异性管理方向。该指标体系较为科学合理,分区结果较为实际可行,可为研究区域流域分区管理提供一定的理论指导。  相似文献   

18.
River water has dual functions; it can be withdrawn for agricultural, industrial, and domestic uses and provides eco-environmental water (EEW) for riverine systems. A concept of intensity of ecological function of river water (IEFRW) has been put forward, and an integrated water quantity and quality evaluation method in combination with eco-environmental water requirements has been developed for a river. Based on the monthly data of water quality and quantity as well as the withdrawals during 1997 to 1999, an integrated evaluation of water resources has been conducted for the Yellow River. The results indicated that actual IEFRW can directly reflect the health state of riverine ecosystems. The actual increments of water resources availabilities caused by providing EEW for the riverine systems were lower than the eco-environmental water requirements of the riverine ecosystem, leading to the intermittent interruption of river flow and other eco-environmental problems of the Yellow River.  相似文献   

19.
With overly-rapid socio-economic development and population increases, water abstraction for agricultural, industrial and municipal use increases rapidly, while the water left for ecological maintenance decreases greatly. At the same time, large amounts of polluted water are discharged into rivers because purification plants are inadequate or not built in time, causing serious eco-environmental problems in the Haihe river basins which make regional development unsustainable. Estimating eco-environmental carrying capacity related to water is a key to curbing overuse of water and resolving eco-environmental problems. Because of different trends in water resources development and resultant eco-environmental problems in different sub-basins of the Haihe river, there are different water-related eco-environmental carrying capacities (EECCs) in these sub-basins. Time-series and multi-objective optimization methods are used to determine the EECC in various eco-environmental regions of the Haihe river basins, China. The results show that the entirety of the Haihe river basins will not reach a stable, sustainable state until about 2033, through gradual amelioration of eco-environmental problems. The various eco-regions of the sub-basins will need different lengths of time to reach their own stable states because of different available water resources, eco-environmental problems and social and economic development.  相似文献   

20.
河道内生态环境需水量计算方法的研究现状及其改进探讨   总被引:6,自引:0,他引:6  
从河道内生态环境需水量的基本概念出发,提出河道内生态环境需水量的计算方法问题,认为尺度转换问题是河道内生态环境需水计算的基础;总结了目前国内外较为常用的河道内生态环境需水量的计算方法,同时对其进行了综合比较,指出了其优缺点;认为将国外和国内计算方法有机结合并进行合理改进,使之适合国内河道内生态环境需水计算,是今后国内河道内生态环境需水研究的方向之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号