首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. In human U373 MG astrocytoma cells agonist-induced increases in intracellular Ca2+ ([Ca2+]i) are rapidly returned towards prestimulated levels. Examination of the effect of histamine and substance P on [Ca2+]i in thapsigargin-treated cells has allowed a mechanism contributing to this effect to be characterized.
  2. Histamine and substance P stimulated [3H]-inositol monophosphate ([3H]-IP1) accumulation in U373 MG cells. Concentration-response curves of [3H]-IP1 accumulation in suspensions of U373 MG cells in HEPES buffer containing 30 mM Li+ yielded best-fit EC50 values of 19.1±1.5 μM for histamine and 5.7±1.3 nM for substance P.
  3. In confluent monolayers of fura-2 loaded U373 MG cells perfusion with 100 μM histamine resulted in a transient 597±50 nM increase in [Ca2+]i. The best-fit EC50 for histamine was 4.6±2.2 μM. The initial, transient, histamine response was often followed by further small transient increases in [Ca2+]i.
  4. Treatment of U373 MG cells with 5 μM thapsigargin, followed by the readdition of 1.8 mM Ca2+ to the perfusion buffer, resulted in a steady-state level of [Ca2+]i 97±5 nM above pretreated levels (measured 400 s after readdition of Ca2+). Perfusion of histamine (100 μM, 100 s) caused a rapid decline in the thapsigargin-induced steady state level of [Ca2+]i. This effect of histamine was normally reversible upon washout. The best-fit EC50 for the histamine response was 0.8±0.2 μM. Substance P (10 nM, 100 s) also caused a reduction in thapsigargin-induced steady-state levels of [Ca2+]i.
  5. Neither 100 μM histamine nor 10 nM substance P inhibited the rate of quench of fura-2 fluorescence by Mn2+ in U373 MG cells pretreated with 5 μM thapsigargin, indicating that the depressant effect on steady-state raised [Ca2+]i was probably not due to a block of Ca2+ entry.
  6. The depressant effect of histamine on [Ca2+]i was blocked by 1 μM mepyramine, and was partially reduced by pre-incubation with 1 μM staurosporine (61±7% reduction) and with Ro 31-8220 (24±10% and 50±6% reduction by 1 and 10 μM Ro 31-8220, respectively). Pre-incubation with H-89 did not alter the depressant effect of histamine.
  7. Neither 1 μM staurosporine nor 10 μM KN-62 inhibited the binding of [3H]-mepyramine to guinea-pig cerebellar membranes, whereas it was reduced by 17±1% and 55±2% by 1 and 10 μM Ro 31-8220, respectively. However, [3H]-IP1 accumulation stimulated by histamine in U373 MG cells was not inhibited by 1 or 10 μM Ro 31-8220 and in 2 out of 3 experiments there was a significant potentiation of the response to histamine with both concentrations of Ro 31-8220. Staurosporine, 1 μM, similarly potentiated the response to 100 μM histamine in 3 out of 4 experiments. KN-62 (10 μM) did not stimulate histamine-induced [3H]-IP1 accumulation.
  8. In HEPES buffer to which no Ca2+ had been added, histamine stimulated a transient 451±107 nM increase in [Ca2+]i. Pretreatment with 1 μM and 10 μM Ro 31-8220 did not significantly alter the initial peak response to histamine, but slowed the rate at which histamine-induced increases in [Ca2+]i were returned to prestimulated levels. Pretreatment with KN-62 had no significant effect on the response to histamine, but consistently inhibited the secondary slower phase of the decline in [Ca2+]i. H-89 did not alter the histamine response.
  9. The effect of histamine in stimulating Ca2+ extrusion was not confined to U373 MG cells, since 100 μM histamine also caused a rapid decrease in steady-state levels of [Ca2+]i in thapsigargin-treated human HeLa cells.
  10. The results indicate that agonists which increase [Ca2+]i via activation of phosphoinositide metabolism can also stimulate a homeostatic mechanism which acts to reduce [Ca2+]i. The balance of the evidence indicates that in U373 MG cells the latter effect most likely involves a PKC-mediated stimulation of a Ca2+-extrusion pump.
  相似文献   

2.
  1. The mechanisms underlying the midazolam-induced relaxation of the noradrenaline (NA)-contraction were studied by measuring membrane potential, isometric force and intracellular concentration of Ca2+([Ca2+]i) in endothelium-denuded muscle strips from the rabbit mesenteric resistance artery. The actions of midazolam were compared with those of nicardipine, an L-type Ca2+-channel blocker.
  2. Midazolam (30 and 100 μM) did not modify either the resting membrane potential or the membrane depolarization induced by 10 μM NA.
  3. NA (10 μM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Midazolam (10–100 μM) did not modify the resting [Ca2+]i, but attenuated the NA-induced phasic and tonic increases in [Ca2+]i and force, in a concentration-dependent manner. In contrast, nicardipine (0.3 μM) attenuated the NA-induced tonic, but not phasic, increases in [Ca2+]i and force.
  4. In Ca2+-free solution containing 2 mM EGTA, NA (10 μM) transiently increased [Ca2+]i and force. Midazolam (10–100 μM), but not nicardipine (0.3 μM), attenuated this NA-induced increase in [Ca2+]i and force, in a concentration-dependent manner. However, midazolam (10 and 30 μM), had no effect on the increases in [Ca2+]i and force induced by 10 mM caffeine.
  5. In ryanodine-treated strips, which have functionally lost the NA-sensitive Ca2+- storage sites, NA slowly increased [Ca2+]i and force. Nicardipine (0.3 μM) did not modify the resting [Ca2+]i but partly attenuated the NA-induced increases in [Ca2+]i and force. In the presence of nicardipine, midazolam (100 μM) lowered the resting [Ca2+]i and further attenuated the remaining NA-induced increases in [Ca2+]i and force.
  6. The [Ca2+]i-force relationship was obtained in ryanodine-treated strips by the application of ascending concentrations of Ca2+ (0.16–2.6 mM) in Ca2+-free solution containing 100 mM K+. NA (10 μM) shifted the [Ca2+]i-force relationship to the left and enhanced the maximum Ca2+-induced force. Under these conditions, whether in the presence or absence of 10 μM NA, midazolam (10 and 30 μM) attenuated the increases in [Ca2+]i and force induced by Ca2+ without changing the [Ca2+]i-force relationship.
  7. It was concluded that, in smooth muscle of the rabbit mesenteric resistance artery, midazolam inhibits the NA-induced contraction through its inhibitory action on NA-induced Ca2+ mobilization. Midazolam attenuates NA-induced Ca2+ influx via its inhibition of both nicardipine-sensitive and -insensitive pathways. Furthermore, midazolam attenuates the NA-induced release of Ca2+ from the storage sites. This effect contributes to the midazolam-induced inhibition of the NA-induced phasic contraction.
  相似文献   

3.
  1. Cytosolic calcium concentration ([Ca2+]i) by indo 1 microspectrofluorimetry in freshly isolated cells and isometric contraction of isolated rings were measured in response to muscarinic cholinoceptor stimulation in rat tracheal smooth muscle.
  2. In isolated myocytes, acetylcholine (ACh, 0.031 μM) caused a rapid and graded increase in [Ca2+]i up to a net amplitude of 492±26 nM (n=19) which gradually declined. The EC50 for ACh was 0.13 μM. This first [Ca2+]i peak was followed, when the ACh concentration increased, in approximately 5060% of the cells, by successive peaks of decreased amplitude ([Ca2+]i oscillations) superimposed on the plateau phase. Whereas the percentage of cells exhibiting [Ca2+]i oscillations remained consistent, the frequency of these oscillations increased to up to 10 min−1 with an ACh concentration of 100 μM.
  3. Removal of extracellular calcium (in the presence of EGTA, 0.4 mM) or addition of the voltage-dependent Ca2+-channel blocker verapamil (10 μM) did not alter the first [Ca2+]i peak, the plateau or the oscillations induced by ACh or carbachol. In contrast, the specific inhibitor of the sarcoplasmic Ca2+-ATPase, thapsigargin (1 μM), completely abolished the [Ca2+]i response. Thapsigargin (1 μM) also blocked the caffeine (5 mM)-induced transient rise in [Ca2+]i.
  4. Atropine (a non-selective muscarinic cholinoceptor antagonist) and 4-diphenyl acetoxy N-methyl piperidine (4-DAMP, a selective M3 antagonist) inhibited the [Ca2+]i response to muscarinic cholinoceptor activation with an IC50 of 13 and 20 nM, respectively. Pirenzepine (a selective M1 antagonist) also totally inhibited the [Ca2+]i response to ACh but with a higher IC50 of 2 μM. Methoctramine (a selective M2 antagonist) up to a concentration of 10 μM caused only a 40% inhibition. The effect of muscarinic antagonists on cumulative concentration-response curves (CCRC) for carbachol was assessed at the following concentrations: atropine and 4-DAMP at 3, 10 and 30 nM; pirenzepine 0.3, 1 and 3 μM, and methoctramine at 1, 3 and 10 μM. For these concentrations, all of the antagonists produced a rightward shift of the CCRC for carbachol and pA2 values were 9.2, 8.8, 6.7 and 6.3, respectively.
  5. In conclusion, the present study indicates that muscarinic stimulation of rat isolated tracheal smooth muscle cells induces [Ca2+]i oscillations. The occurrence of these oscillations depends on the graded amplitude of the first [Ca2+]i rise and their frequency may play a role in the amplitude of the mechanical activity in response to muscarinic cholinoceptor activation. Both the [Ca2+]i and the contractile responses are primarily dependent on activation of the M3 receptor subtype.
  相似文献   

4.
  1. ATP (10–100 μM), but not glutamate (100  μM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 μM) nor glutamate (100 μM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 μM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 μM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 μM to 10 μM).
  2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 μM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 μM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells).
  3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but α,β-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 μM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2′- and 3′-O-(4-Benzoylbenzoyl)-adenosine 5′-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 μM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5′-triphosphate-2′, 3′-dialdehyde (oxidized ATP, 100 μM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 μM).
  4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.
  相似文献   

5.
  1. The rat μ-opioid receptor has recently been cloned, yet its second messenger coupling remains unclear. The endogenous μ-opioid receptor in SH-SY5Y cells couples to phospholipase C (PLC), increases [Ca2+]i and inhibits adenylyl cyclase (AC). We have examined the effects of μ-opioid agonists on inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), [Ca2+]i and adenosine 3′ : 5′-cyclic monophosphate (cyclic AMP) formation in Chinese hamster ovarian (CHO) cells transfected with the cloned μ-opioid receptor.
  2. Opioid receptor binding was assessed with [3H]-diprenorphine ([3H]-DPN) as a radiolabel. Ins(1,4,5)P3 and cyclic AMP were measured by specific radioreceptor assays. [Ca2+]i was measured fluorimetrically with Fura-2.
  3. Scatchard analysis of [3H]-DPN binding revealed that the Bmax varied between passages. Fentanyl (10 pM–1 μM) dose-dependently displaced [3H]-DPN, yielding a curve which had a Hill slope of less than unity (0.6±0.1), and was best fit to a two site model, with pKi values (% of sites) of 9.97±0.4 (27±4.8%) and 7.68±0.07 (73±4.8%). In the presence of GppNHp (100 μM) and Na+ (100 mM), the curve was shifted to the right and became steeper (Hill slope=0.9±0.1) with a pKi value of 6.76±0.04.
  4. Fentanyl (0.1 nM–1 μM) had no effect on basal, but dose-dependently inhibited forskolin (1 μM)-stimulated, cyclic AMP formation (pIC50=7.42±0.23), in a pertussis toxin (PTX; 100 ng ml−1 for 24 h)-sensitive and naloxone-reversible manner (Ki=1.7 nM). Morphine (1 μM) and [D-Ala2, MePhe4, gly(ol)5]-enkephalin (DAMGO, 1 μM) also inhibited forskolin (1 μM)-stimulated cyclic AMP formation, whilst [D-Pen2, D-Pen5], enkephalin (DPDPE, 1 μM) did not.
  5. Fentanyl (0.1 nM–10 μM) caused a naloxone (1 μM)-reversible, dose-dependent stimulation of Ins(1,4,5)P3 formation, with a pEC50 of 7.95±0.15 (n=5). PTX (100 ng ml−1 for 24 h) abolished, whilst Ni2+ (2.5 mM) inhibited (by 52%), the fentanyl-induced Ins(1,4,5)P3 response. Morphine (1 μM) and DAMGO (1 μM), but not DPDPE (1 μM), also stimulated Ins(1,4,5)P3 formation. Fentanyl (1 μM) also caused an increase in [Ca2+]i (80±16.4 nM, n=6), reaching a maximum at 26.8±2.5 s. The increase in [Ca2+]i remained elevated until sampling ended (200 s) and was essentially abolished by the addition of naloxone (1 μM). Pre-incubation with naloxone (1 μM, 3 min) completely abolished fentanyl-induced increases in [Ca2+]i.
  6. In conclusion, the cloned μ-opioid receptor when expressed in CHO cells stimulates PLC and inhibits AC, both effects being mediated by a PTX-sensitive G-protein. In addition, the receptor couples to an increase in [Ca2+]i. These findings are consistent with the previously described effector-second messenger coupling of the endogenous μ-opioid receptor.
  相似文献   

6.
  1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation.
  2. In RAW 264.7 cells UTP (100 μM) and thapsigargin (1  μM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 μM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 μM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml−1) or 4-bromophenacyl bromide (100 μM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses.
  3. U73122 (10 μM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise.
  4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM–3 μM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 μM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release.
  5. Short-term treatment with PMA (1 μM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA.
  6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 μM), Ro 31-8220 (10 μM), Go 6976 (1 μM) and the down-regulation of PKC.
  7. Following treatment of cells with SK&F 96365 (30 μM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated.
  8. Neither PD 98059 (100 μM), MEK a inhibitor, nor genistein (100 μM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin.
  9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.
  相似文献   

7.
  1. To characterize increases in cytosolic free Ca2+ concentration ([Ca2+]i) associated with discharge of action potentials, membrane potential and [Ca2+]i were simultaneously recorded from single smooth muscle cells of guinea-pig ileum by use of a combination of nystatin-perforated patch clamp and fura-2 fluorimetry techniques.
  2. A single action potential in response to a depolarizing current pulse elicited a transient rise in [Ca2+]i. When the duration of the current pulse was prolonged, action potentials were repeatedly discharged during the early period of the pulse duration with a progressive decrease in overshoot potential, upstroke rate and repolarization rate. However, such action potentials could each trigger [Ca2+]i transients with an almost constant amplitude.
  3. Nicardipine (1 μM) and La3+ (10 μM), blockers of voltage-dependent Ca2+ channels (VDCCs), abolished both the action potential discharge and the [Ca2+]i transient.
  4. Charybdotoxin (ChTX, 300 nM) and tetraethylammonium (TEA, 2 mM), blockers of large conductance Ca2+-activated K+ channels, decreased the rate of repolarization of action potentials but increased the amplitude of [Ca2+]i transients.
  5. Thapsigargin (1 μM), an inhibitor of SR Ca2+-ATPase, slowed the falling phase and somewhat increased the amplitude, of action potential-triggered [Ca2+]i transients without affecting action potentials. In addition, in voltage-clamped cells, the drug had little effect on the voltage step-evoked Ca2+ current but exerted a similar effect on its concomitant rise in [Ca2+]i to that on the action potential-triggered [Ca2+]i transient.
  6. Similar action potential-triggered [Ca2+]i transients were induced by brief exposures to high-K+ solution. They were not decreased, but rather increased, after depletion of intracellular Ca2+ stores by a combination of ryanodine (30 μM) and caffeine (10 mM) through an open-lock of Ca2+-induced Ca2+ release (CICR)-related channels.
  7. The results show that action potentials, discharged repeatedly during the early period of a long membrane depolarization, undergo a progressive change in configuration but can each trigger a constant rise in [Ca2+]i. Intracellular Ca2+ stores have a role, especially in accelerating the falling phase of the action potential-triggered [Ca2+]i transients by replenishing cytosolic Ca2+. No evidence was provided for the involvement of CICR in the action potential-triggered [Ca2+]i transient.
  相似文献   

8.
  1. N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166) is a new non-sulphonylurea oral hypoglycaemic agent which stimulates insulin release by increasing cytosolic Ca2+ concentration ([Ca2+]i) in β-cells.
  2. We studied comparative effects of A-4166 and sulphonylureas on [Ca2+]i, measured by dual-wavelength fura-2 microfluorometry, in single rat pancreatic β-cells under normal conditions and conditions where glucose metabolism was inhibited.
  3. A glucokinase inhibitor, mannoheptulose (10 mM), a mitochondrial respiratory inhibitor, KCN (100 μM), and uncouplers, dinitrophenol (DNP, 50 μM) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP, 0.3 μM), were used to abolish glucose-induced increases in [Ca2+]i in a reversible manner.
  4. Under control conditions, A-4166 was one order more potent than tolbutamide in increasing [Ca2+]i, and maximal responses were evoked by 30 μM A-4166 and 300 μM tolbutamide. These equipotent concentrations were employed for the comparative study where glucose metabolism was inhibited.
  5. In the presence of mannoheptulose, [Ca2+]i responses to tolbutamide, but not those to A-4166, were attenuated in a reversible manner.
  6. KCN, DNP and FCCP inhibited [Ca2+]i responses to tolbutamide to a much greater extent than those to A-4166. Responses to tolbutamide even at 3.3 times the equipotent concentration (1000 μM) were also markedly attenuated by these inhibitors. Responses evoked by another sulphonylurea, gliclazide, were inhibited by DNP to a larger extent than A-4166-induced responses.
  7. The results indicate that A-4166 acts more effectively than sulphonylureas to increase [Ca2+]i in β-cells during metabolic inhibition.
  相似文献   

9.
  1. This study was aimed at characterizing ATP-induced rises in cytosolic free calcium ion, [Ca2+]i, in a population of rat striatal astrocytes loaded with the fluorescent Ca2+ probe Fura2, by means of fluorescence spectrometry.
  2. ATP triggered a fast and transient elevation of [Ca2+]i in a concentration-dependent manner. The responses of the purine analogues 2-methylthio-ATP (2-meSATP), adenosine-5′-O-(2-thiodiphosphate) (ADPβS), as well as uridine-5′-triphosphate (UTP) resembled that of ATP, while α,β-methylene-ATP (α,β-meATP) and β,γ-methylene-ATP (β,γ-meATP) were totally ineffective.
  3. Suramin (50 μM) had only a minor effect on the ATP response, whereas pyridoxal phosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (5 μM) significantly depressed the maximum response.
  4. Extracellular Ca2+ did not contribute to the observed [Ca2+]i rise: removing calcium from the extracellular medium (with 1 mM EGTA) or blocking its influx by means of either Ni2+ (1 mM) or Mn2+ (1 mM) did not modify the nucleotide responses.
  5. Furthermore, after preincubation with 10 μM thapsigargin, the nucleotide-evoked [Ca2+]i increments were completely abolished. In contrast, 10 mM caffeine did not affect the responses, suggesting that thapsigargin-, but not caffeine/ryanodine-sensitive stores are involved.
  6. Both application of the G-protein blocker guanosine-5′-O-(2-thiodiphosphate) (GDPβS) (1 mM) and preincubation with pertussis toxin (PTx) (350 ng ml−1) partially inhibited the nucleotide-mediated responses. Moreover, the phospholipase C (PLC) inhibitor U-73122, but not its inactive stereoisomer U-73343 (5 μM), significantly reduced the ATP-evoked [Ca2+]i rise.
  7. In conclusion, our results suggest that, in rat striatal astrocytes, ATP-elicited elevation of [Ca2+]i is due solely to release from intracellular stores and is mediated by a G-protein-linked P2Y receptor, partially sensitive to PTx and coupled to PLC.
  相似文献   

10.
  1. The role of protein kinase C (PKC) in mediating the action of κ-receptor stimulation on intracellular Ca2+ and cyclic AMP production was determined by studying the effects of trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl] cyclohexyl) benzeneacetamide methanesulphonate (U50,488H), a selective κ-receptor agonist, and phorbol 12-myristate 13-acetate (PMA), a PKC agonist, on the electrically-induced [Ca2+]i transient and forskolin-stimulated cyclic AMP accumulation in the presence and absence of a PKC antagonist, staurosporine or chelerythrine, in the single rat ventricular myocyte.
  2. U50,488H at 2.5–40 μM decreased both the electrically-induced [Ca2+]i transient and forskolin-stimulated cyclic AMP accumulation dose-dependently, effects which PMA mimicked. The effects of the κ-agonist, that were blocked by a selective κ-antagonist, nor-binaltorphimine, were significantly antagonized by the PKC antagonists, staurosporine and/or chelerythrine. The results indicate that PKC mediates the actions of κ-receptor stimulation.
  3. To determine whether the action of PKC was at the sarcoplasmic reticulum (SR) or not, the [Ca2+]i transient induced by caffeine, that depletes the SR of Ca2+, was used as an indicator of Ca2+ content in the SR. The caffeine-induced [Ca2+]i transient was significantly reduced by U50,488H at 20 μM. This effect of U50,488H on caffeine-induced [Ca2+]i transient was significantly attenuated by 1 μM chelerythrine, indicating that the action of PKC involves mobilization of Ca2+ from the SR. When the increase in IP3 production in response to κ-receptor stimulation with U50,488H in the ventricular myocyte was determined, the effect of U50,488H was the same in the presence and absence of staurosporine, suggesting that the effect of PKC activation subsequent to κ-receptor stimulation does not involve IP3. The observations suggest that PKC may act directly at the SR.
  4. In conclusion, the present study has provided evidence for the first time that PKC may be involved in the action of κ-receptor stimulation on Ca2+ in the SR and cyclic AMP production, both of which play an essential role in Ca2+ homeostasis in the heart.
  相似文献   

11.
  1. The binding of modulators of the ATP-sensitive K+ channel (KATP channel) to the murine sulphonylurea receptor, SUR2B, was investigated. SUR2B, a proposed subunit of the vascular KATP channel, was expressed in HEK 293 cells and binding assays were performed in membranes at 37°C using the tritiated KATP channel opener, [3H]-P1075.
  2. Binding of [3H]-P1075 required the presence of Mg2+ and ATP. MgATP activated binding with EC50 values of 10 and 3 μM at free Mg2+ concentrations of 3 μM and 1 mM, respectively. At 1 mM Mg2+, binding was lower than at 3 μM Mg2+.
  3. [3H]-P1075 saturation binding experiments, performed at 3 mM ATP and free Mg2+ concentrations of 3 μM and 1 mM, gave KD values of 1.8 and 3.4 nM and BMAX values of 876 and 698 fmol mg−1, respectively.
  4. In competition experiments, openers inhibited [3H]-P1075 binding with potencies similar to those determined in rings of rat aorta.
  5. Glibenclamide inhibited [3H]-P1075 binding with Ki values of 0.35 and 2.4 μM at 3 μM and 1 mM free Mg2+, respectively. Glibenclamide enhanced the dissociation of the [3H]-P1075-SUR2B complex suggesting a negative allosteric coupling between the binding sites for P1075 and the sulphonylureas.
  6. It is concluded that an MgATP site on SUR2B with μM affinity must be occupied to allow opener binding whereas Mg2+ concentrations ⩾10 μM decrease the affinities for openers and glibenclamide. The properties of the [3H]-P1075 site strongly suggest that SUR2B represents the drug receptor of the openers in vascular smooth muscle.
  相似文献   

12.
  1. The effects of exogenous adenosine 5′-triphosphate (ATP) and α,β-methylene ATP (α,βmeATP) on C6BU-1 cells transfected with P2X2 and P2X3 subtypes, separately or together (P2X2+3), were investigated using fura-2 fluorescence recording and whole-cell patch clamp recording methods.
  2. Untransfected C6BU-1 cells showed no intracellular Ca2+ ([Ca2+]i) increase in response to depolarizing stimulation with high K+ or stimulation with ATP. There was no current induced by ATP under voltage clamp conditions in untransfected C6BU-1 cells. ATP caused Ca2+ influx only from extracellular sources in C6BU-1 cells transfected with the P2X subtypes, suggesting that the C6BU-1 cell line is suitable for the characterization of Ca2+ influx through the P2X subtypes.
  3. In C6BU-1 cells transfected with the P2X2 subtype, ATP (more than 10 μM) but not α,βmeATP (up to 100 μM) evoked a rise in [Ca2+]i.
  4. In the cells transfected with the P2X3 subtype, current responses under voltage clamp conditions were observed at ATP concentrations higher than 0.1 μM of α,βmeATP were required. This discrepancy in the concentration dependence of the agonist responses with respect to the [Ca2+]i rise and the current response was seen only with the P2X3 subtype. In addition, the agonist-induced rise in [Ca2+]i was observed only after the first application because of desensitization of this subtype.
  5. In C6BU-1 cells co-transfected with P2X2 and P2X3, ATP at 1 μM evoked a [Ca2+]i rise. This responsiveness was higher than that of the other subtype combinations tested. The efficiency of expression was improved by co-transfection with P2X2 and P2X3, when compared to transfection with the P2X3 subtype alone. The desensitization of the P2X2+3 was apparently slower than that of the P2X3 subtype alone. Therefore, this combination could respond to the repeated application of agonists each time with a [Ca2+]i rise.
  6. These results suggest that the P2X2 and P2X3 subtypes assemble a heteromultimer and that this heterogeneous expression acquires more effective Ca2+ dynamics than that by homogenously expressed P2X2 or P2X3
  相似文献   

13.
  1. In the present work, the properties of 3-methyl isoquinoline, 3,4-dihydropapaverine, tetrahydropapaverine and tetrahydropapaveroline were compared with those of papaverine and laudanosine. The work includes functional studies on rat isolated aorta contracted with noradrenaline, caffeine or KC1, and a determination of the affinity of the compounds for α1-adrenoceptors and calcium channel binding sites, with [#H]-prazosin, [#H]-nitrendipine and [#H]-(+)-cis-diltiazem binding to rat cerebral cortical membranes. The effects of papaverine derivatives on the different molecular forms of cyclic nucleotide phosphodiesterases (PDE) isolated from bovine aorta were also determined.
  2. The three papaverine derivatives show greater affinity than papaverine for the [#H]-prazosin binding site. They are therefore more selective as inhibitors of [#H]-prazosin binding as opposed to [#H]-(+)-cis-diltiazem, while papaverine appears to have approximately equal affinity for both. [#H]-nitrendipine binding was not affected by either papaverine or papaverine derivatives in concentrations up to 100 μM. 3-Methylisoquinoline had no effect on any of the binding sites assayed.
  3. Contractions evoked by noradrenaline (1 μM) in rat aorta were inhibited in a concentration-dependent manner by 3,4-dihydropapaverine, tetrahydropapaverine and with a lower potency, by tetrahydropapaveroline. In Ca2+-free solution, tetrahydropapaverine and to a lesser extent, tetrahydropapaveroline, inhibited the noradrenaline (1 μM) evoked contraction in a concentration-dependent manner and did not modify the phasic contractile response evoked by caffeine (10 mM). This suggests that these alkaloids do not act at the intracellular level, unlike papaverine which inhibits the contractile response to caffeine and noradrenaline.
  4. Inositol phosphates formation induced by noradrenaline (1 μM) in rat aorta was inhibited by tetrahydropapaverine (100 μM) and tetrahydropapaveroline (300 μM), thus suggesting that α1D-adrenoceptors are coupled to phosphoinositide metabolism in rat aorta.
  5. Unlike papaverine, which has a significant effect on all the PDE isoforms, the three alkaloids assayed did not have an inhibitory effect on the different forms of PDE isolated from bovine aorta.
  6. These results provide evidence that papaverine derivatives with a partially or totally reduced isoquinoline ring have a greater affinity for α1-adrenoceptors and a lower affinity for benzothiazepine sites in the Ca2+-channel than papaverine. This structural feature also implies a loss of the inhibitory activity on PDE isoforms. The planarity of the isoquinoline ring (papaverine) impairs the interaction with the α1-adrenoceptor site and facilitates it with the Ca2+-channels and PDEs, whereas the more flexible tetrahydroisoquinoline ring increases the binding to α1-adrenoceptors.
  相似文献   

14.
  1. We recently demonstrated the presence of phospholipase C-coupled bradykinin (BK) B2-receptors in human primary and SV40 virus-immortalized corneal epithelial (CEPI) cells.
  2. The aims of the present studies were to demonstrate the specific binding of [3H]-BK to CEPI cell membranes and to study its pharmacological characteristics. In addition, we wished to study the functional coupling of the BK receptors to various physiological and pathological mechanisms in the CEPI cells, including phosphoinositide (PI) turnover, intracellular Ca2+-mobilization ([Ca2+]i), cell proliferation (via [3H]-thymidine incorporation), and the release of various cytokines, collagenase-1 (matrix metalloproteinase-1) and prostaglandin E2 (PGE2).
  3. Specific [3H]-BK binding comprised 83±2% of the total binding, and was of high affinity (Kd=1.66±0.52 nM, n=5), saturable (Bmax=640±154 fmol g−1 wet weight) and reversible. Competition studies yielded the following affinity values for BK and a number of BK-related peptides: Hoe-140 (D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]BK; icatibant): Ki=0.17±0.07 nM; BK: Ki=1.0±0.11 nM; [Tyr8]-BK: Ki=12.9±2.3 nM; [des-Arg9]-BK: Ki>9,200 nM (all n=3–5)).
  4. BK potently stimulated PI turnover (EC50=2.3±0.3 nM; n=7) and [Ca2+]i mobilization (EC50=8–20 nM) in CEPI cells and both responses were inhibited in a concentration-dependent manner by 100 nM–10 μM Hoe-140, a selective B2-receptor antagonist, and also inhibited by the selective phospholipase C (PLC) inhibitor, U73122 (1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) (IC50=3.0±1.6 μM). BK-induced [Ca2+]i mobilization was reduced by about 30% in the presence of 4 mM EGTA, but was not significantly affected by 100 nM nifedipine.
  5. BK (0.1 nM–10 μM) significantly (P<0.05–0.001) stimulated [3H]-thymidine incorporation into CEPI cellular DNA. However, while interleukin-1α (IL-1α; 10 ng ml−1) potently stimulated the release of IL-6, IL-8 and granulocyte macrophage colony-stimulating factor from CEPI cells, BK (0.1 nM–10 μM) was without effect.
  6. Whilst phorbol-12-myristate-13-acetate (PMA; 3 μg ml−1) and 10% foetal bovine serum (positive control agents) significantly stimulated the release of both MMP-1 and PGE2 from CEPI cells, BK (0.1 nM–10 μM) was without any significant effect under these conditions.
  7. In conclusion, these data indicate that the CEPI cells express high-affinity [3H]-BK binding sites representing B2-subtype BK receptors coupled to PI turnover and [Ca2+]i mobilization which appear to stimulate [3H]-thymidine incorporation into cellular DNA. In contrast, BK failed to elicit the release of PGE2, various cytokines and MMP-1 from CEPI cells. These results suggest that BK may have a potential role in corneal epithelium wound healing by stimulating cell proliferation.
  相似文献   

15.
  1. Inhalation of vanadium compounds, particularly vanadate, is a cause of occupational bronchial asthma. We have now studied the action of vanadate on human isolated bronchus. Vanadate (0.1 μM–3 mM) produced concentration-dependent, well-sustained contraction. Its −logEC50 was 3.74±0.05 (mean±s.e.mean) and its maximal effect was equivalent to 97.5±4.2% of the response to acetylcholine (ACh, 1 mM).
  2. Vanadate (200 μM)-induced contraction of human bronchus was epithelium-independent and was not inhibited by indomethacin (2.8 μM), zileuton (10 μM), a mixture of atropine, mepyramine and phentolamine (each at 1 μM), or by mast cell degranulation with compound 48/80.
  3. Vanadate (200 μM)-induced contraction was unaltered by tissue exposure to verapamil or nifedipine (each 1 μM) or to a Ca2+-free, EGTA (0.1 mM)-containing physiological salt solution (PSS). However, tissue incubation with ryanodine (10 μM) in Ca2+-free, EGTA (0.1 mM)-containing PSS reduced vanadate-induced contraction. A series of vanadate challenges was made in tissues exposed to Ca2+-free EGTA (0.1 mM)-containing PSS with the object of depleting intracellular Ca2+ stores. In such tissues cyclopiazonic acid (CPA; 10 μM) prevented Ca2+-induced recovery of vanadate-induced contraction.
  4. Tissue incubation in K+-rich (80 mM) PSS, K+-free PSS, or PSS containing ouabain (10 μM) did not alter vanadate (200 μM)-induced contraction. Ouabain (10 μM) abolished the K+-induced relaxation of human bronchus bathed in K+-free PSS. This action was not shared by vanadate (200 μM). The tissue content of Na+ was increased and the tissue content of K+ was decreased by ouabain (10 μM). In contrast, vanadate (200 μM) did not alter the tissue content of these ions. Tissue incubation in a Na+-deficient (25 mM) PSS or in PSS containing amiloride (0.1 mM) markedly inhibited the spasmogenic effect of vanadate (200 μM).
  5. Vanadate (200 μM)-induced contractions were markedly reduced by tissue treatment with each of the protein kinase C (PKC) inhibitors H-7 (10 μM), staurosporine (1 μM) and calphostin C (1 μM). Genistein (100 μM), an inhibitor of protein tyrosine kinase, also reduced the response to vanadate.
  6. Vanadate (0.1–3 mM) and ACh (1 μM–3 mM) each increased inositol phosphate accumulation in bronchus. Such responses were unaffected by a Ca2+-free medium either alone or in combination with ryanodine (10 μM).
  7. In human cultured tracheal smooth muscle cells, histamine (100 μM) and vanadate (200 μM) each produced a transient increase in intracellular Ca2+ concentration ([Ca2+]i).
  8. Intracellular microelectrode recording showed that the contractile effect of vanadate (200 μM) in human bronchus was associated with cellular depolarization.
  9. It is concluded that vanadate acts directly on human bronchial smooth muscle, promoting the release of Ca2+ from an intracellular store. The Ca2+ release mechanism involves both the production of inositol phosphate second messengers and inhibition of Ca-ATPase. The activation of PKC plays an important role in mediating vanadate-induced contraction at values of [Ca2+]i that are close to basal.
  相似文献   

16.
  1. The calcium channel blockers (CCBs), nifedipine, nicardipine, diltiazem and verapamil, were used to displace the binding of [3H]-U69593 ((5a,7a,8b)-(+)-N-methyl-N-(7-[1-pyrrolidinyl]-1-oxaspiro[4,5]dec-8-yl)-benzeneacetamide), a specific κ-opioid agonist, in the rat cardiac sarcolemma. The CCBs competed with the binding of [3H]-U69593 (4 nM) in a dose-dependent manner. The displacing potency of verapamil was 55 times greater than that of nifedipine.
  2. The effects of two CCBs, verapamil and nifedipine, on the arrhythmogenic action of κ-receptor stimulation by a specific κ-receptor agonist, U50,488H (trans-(±-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl] cyclohexyl) benzeacetamide methanesulphonate), were also studied in the rat isolated perfused heart. U50,488H 80–800 nmol dose-dependently induced arrhythmias, which were completely abolished by a selective κ-receptor antagonist, nor-BNI (nor-binaltorphimine,17,17′-(dicyclopropylmethyl)-6,6′,7,7′-6,6′-imino-7,7′-binorphinan-3,4′,14, 14′-tetrol), at 100 nmol. The arrhythmogenic effect was also attenuated by both verapamil and nifedipine in a dose-dependent manner. The ED50 values for verapamil and nifedipine were 2.75 and 63.7 nmol, respectively. The antiarrhythmic potencies of these two CCBs were correlated to their displacing potencies and inversely related to their well known potencies in inhibiting transmembrane Ca2+ influx in the cardiac muscle.
  3. Measurement of [Ca2+]i in the absence of free extracellular Ca2+ by a spectrofluorometric method, with fura-2 as Ca2+ indicator, showed that U50,488H 5×10−5M slowly increased [Ca2+]i in single ventricular myocytes and this effect was abolished by pretreatment with nor-BNI (5 μM), or ryanodine (5 μM). Verapamil 1 and 10 μM abolished the effect of U50,488H in 37.5% (3 out of 8) and 100% (12 out of 12) of the cells studied, respectively. On the other hand, nifedipine 10 and 100 μM had no effect at all. Neither verapamil nor nifedipine exerted any significant effect on the caffeine-induced Ca2+ transient.
  4. The observations suggest that CCBs may inhibit the actions of κ-receptor stimulation at the level of the κ-receptor.
  相似文献   

17.
18.
  1. Acetylcholine (ACh) was locally applied onto the endplate region in a mouse phrenic nerve-diaphragm muscle preparation to measure intracellular free calcium ([Ca2+]i) entry through nicotinic ACh receptors (AChRs) by use of Ca2+-aequorin luminescence.
  2. ACh (0.1–3 mM, 20 μl) elicited biphasic elevation of [Ca2+]i (fast and slow Ca2+ mobilization) in muscle cells. The peak amplitude of the slow Ca2+ mobilization (not accompanied by twitch tension) was concentration-dependently increased by ACh, whereas that of the fast component (accompanied by twitch tension) reached a maximum response at a lower concentration (0.1 mM) of applied ACh.
  3. A pulse of nicotinic agonists, (−)-nicotine (10 mM) and 1,1-dimethyl-4-phenyl-piperazinium (10 mM), but not a muscarinic agonist pilocarpine (10 mM), also elicited a biphasic Ca2+ signal.
  4. Even though ACh release from motor nerve endings was blocked by botulinum toxin (5 μg, bolus i.p. before isolation of the tissue), the generation of both a fast and slow Ca2+ component caused by ACh application was observed.
  5. These results strongly suggest that ACh locally applied onto the endplate region of skeletal muscle induces a slow Ca2+ signal reflecting Ca2+ entry through a postsynaptic nicotinic AChR, which has a low sensitivity to transmitter ACh.
  相似文献   

19.
  1. Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline.
  2. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by NG-nitro-L-arginine (100 μM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity.
  3. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine.
  4. The 35 mM K+ response was insensitive to ω-conotoxin GVIA (1 μM) and nifedipine (100 μM), but could be prevented in part by ω-agatoxin IVA (0.1 and 1 μM). The inhibition caused by 0.1 μM ω-agatoxin IVA (∼30%) was enhanced by adding ω-conotoxin GVIA (1 μM) or nifedipine (100 μM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 μM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 μM ω-conotoxin GVIA plus 100 μM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX.
  5. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels are blocked.
  相似文献   

20.
  1. Responses in brain produced by the activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype of ionotropic receptor for L-glutamate are often rapidly desensitizing. AMPA-induced desensitization and its characteristics, and the potentiating effect of cyclothiazide were investigated in vitro by analysing AMPA-induced release of [3H]-noradrenaline from prisms of rat hippocampus.
  2. AMPA (1–1000 μM) stimulated the release of [3H]-noradrenaline in a concentration-dependent manner that was both calcium-dependent and tetrodotoxin-sensitive, and attenuated by the AMPA-selective antagonists, NBQX (1 and 10 μM), LY 293558 (1 and 10 μM) and GYKI 52466 (10 and 30 μM).
  3. By use of an experimental procedure with consecutive applications of AMPA (100 μM, 28 min apart), the second response was reduced, indicative of receptor desensitization, and was reversed by cyclothiazide in a concentration-dependent manner (1–300 μM). The concentration-response curve for AMPA-induced release of [3H]-noradrenaline was shifted leftwards, but the reversal by cyclothiazide of the desensitized response was partial and failed to reach the maximal response of the first stimulus.
  4. Observations made with various schedules of cyclothiazide application indicated that the initial AMPA-evoked response was already partially desensitized (150% potentiation by 100 μM cyclothiazide) and that the desensitization was not likely to be due to a time-dependent diminution and was long-lasting (second application of cyclothiazide was ineffective).
  5. Co-application of a number of drugs with actions on second messenger systems, in association with the second AMPA stimulus, revealed significant potentiation of the AMPA-induced release of [3H]-noradrenaline: forskolin (10 μM, +78%), Rp-cAMPS (100 μM, +65%), Ro 31-8220 (10 μM, + 163%) and thapsigargin (100 μM, +161%).
  6. The AMPA receptor-mediated response regulating the release of [3H]-noradrenaline from rat hippocampal slices was desensitized and cyclothiazide acted to reverse partially the desensitization in a concentration-dependent manner. Since the time-course of desensitization was longer lasting than that noted in previous electrophysiological studies, multiple events may be involved in the down-regulation of AMPA receptor activity including receptor phosphorylation and depletion of intracellular Ca2+ stores.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号