首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adhesin-mediated binding to extracellular matrix (ECM) proteins is thought to be a crucial step in the pathogenic process of many bacterial infections. We have previously reported conditional adherence of most Enterococcus faecalis isolates, after growth at 46°C, to ECM proteins collagen types I and IV and laminin; identified an E. faecalis-specific gene, ace, whose encoded protein has characteristics of a bacterial adhesin; and implicated Ace in binding to collagen type I. In this study, we constructed an ace disruption mutant from E. faecalis strain OG1RF that showed marked reduction in adherence to collagen types I and IV and laminin when compared to the parental OG1RF strain after growth at 46°C. Polyclonal immune serum raised against the OG1RF-derived recombinant Ace A domain reacted with a single ~105-kDa band of mutanolysin extracts from OG1RF grown at 46°C, while no band was detected in extracts from OG1RF grown at 37°C, nor from the OG1RF ace mutant grown at 37 or 46°C. IgGs purified from the anti-Ace A immune serum inhibited adherence of 46°C-grown E. faecalis OG1RF to immobilized collagen type IV and laminin as well as collagen type I, at a concentration as low as 1 μg/ml, and also inhibited the 46°C-evoked adherence of two clinical isolates tested. We also showed in vitro interaction of collagen type IV with Ace from OG1RF mutanolysin extracts on a far-Western blot. Binding of recombinant Ace A to immobilized collagen types I and IV and laminin was demonstrated in an enzyme-linked immunosorbent assay and was shown to be concentration dependent. These results indicate that Ace A mediates the conditional binding of E. faecalis OG1RF to collagen type IV and laminin in addition to collagen type I.  相似文献   

3.
Previous studies have demonstrated that the ebp operon and the ace gene of Enterococcus faecalis, encoding endocarditis- and biofilm-associated pili and an adhesin to collagen of E. faecalis, respectively, are both important in experimental urinary tract infections (UTI) and endocarditis. We have also shown that growth of E. faecalis in brain heart infusion (BHI) serum enhances Ebp pilus and Ace production and increases adherence to several host extracellular matrix proteins. Here, we report that deletion of ebpABC almost eliminated serum-elicited adherence to fibrinogen (P < 0.0001), resulted in moderate reduction in adherence to collagen (P < 0.05), and had no effect on fibronectin adherence relative to that of wild-type OG1RF. An OG1RFΔaceΔebpABC double mutant showed further reduced collagen adherence versus that of the OG1RFΔace or OG1RFΔebpABC mutants (P < 0.001). These results were corroborated by complementation and/or studies with native pilus-enriched surface extracts and a collagen-secreting 3T6 fibroblast cell line, as well as antibody inhibition. In the UTI model, both the OG1RFΔace and OG1RFΔaceΔebpABC mutants were found to be significantly attenuated compared to the wild type; however, no significant differences were observed between individual ace or ebp mutants and the OG1RFΔaceΔebpABC mutant. In summary, these data implicate the Ebp pili as having some role in collagen adherence, albeit less than that of Ace, and a very major role in fibrinogen adherence, which may explain in part the importance of these pili in experimental endocarditis. The OG1RFΔaceΔebpABC mutant was attenuated in the UTI model, although not significantly more so than the Δace or ΔebpABC mutants, suggesting involvement of other E. faecalis factors in urinary tract colonization or infection.  相似文献   

4.
Tomita H  Ike Y 《Infection and immunity》2004,72(10):5877-5885
The ability of Enterococcus faecalis clinical isolates to adhere to immobilized extracellular matrixes (ECMs) coating the walls of microtiter plates was examined by microscopy. The ECMs consisted of fibronectin, laminin, collagen types I, II, IV, and V, fibrinogen, and lactoferrin. With the exception of fibrinogen, each isolate showed a different level of adherence to each of the ECMs. No significant level of adherence to fibrinogen was observed for any isolate. The tissue-specific adhesive strains AS11, AS12, AS14, AS15, HT11, and HT12, which showed highly efficient adherence to human bladder carcinoma T24 cells and human bladder epithelial cells, showed strong adherence to fibronectin, laminin, and collagen type I, II, IV, and V ECMs, and the levels were greater than 10(4) cells/mm2 of well surface coated by ECM. None of the isolates that showed little adherence to human bladder carcinoma T24 cells showed efficient adherence to all the ECMs. The levels of adherence of gelatinase-producing isolates to the collagens were lower than the levels of adherence of gelatinase-negative isolates. When tissue-specific adhesive strains that adhered strongly to each ECM were preincubated with fibronectin, the adherence of the strains to fibronectin was inhibited, but the adherence of the strains to collagen type IV was not inhibited. Likewise, preincubation with collagen type IV inhibited adherence to collagen type IV but not adherence to fibronectin. All of the E. faecalis isolates were shown to carry the ace gene by PCR analysis performed with specific primers for collagen binding domain A of ace. The ace gene encodes Ace (adhesin of collagen from enterococci). The prtF gene of group A streptococci, which encodes the fibronectin binding protein of group A streptococci, was not detected in the tissue-specific adhesive strains by Southern analysis performed with the prtF probe of the Streptococcus pyogenes JRS4 strain. Mutants with altered collagen binding were isolated by insertion of Tn916 into the chromosome of tissue-specific adhesive strain AS14. The number of mutant adhesive bacterial cells that adhered to collagen and also to laminin was 1 or 2 orders lower than the number observed for the wild-type strain, but the level of adherence to fibronectin remained the same as that of the wild-type strain.  相似文献   

5.
In previous studies, we cloned a cluster of genes involved in polysaccharide biosynthesis (epa) from Enterococcus faecalis strain OG1RF and showed that this gene cluster mediated synthesis of a polysaccharide in Escherichia coli. Disruption of two open reading frames in the epa gene cluster of OG1RF generated two mutants, TX5179 and TX5180, which were attenuated in a mouse peritonitis model. In the current study, Western blotting was performed with serum from a patient with E. faecalis endocarditis and polysaccharide extracts from OG1RF and the mutants TX5179 and TX5180. OG1RF showed a smear in the high-molecular-weight region and discrete bands in the low-molecular-weight region, which were missing from the mutants; periodate treatment and carbohydrate staining confirmed the polysaccharide nature of this material. In a neutrophil killing assay using OG1RF-absorbed normal human serum, the mutants TX5179 and TX5180, respectively, were 50 and 2.4 times more susceptible to killing than wild-type OG1RF (P < or = 0.01). With a fluorescence phagocytosis assay, 2.5 to 3 times more of the mutants were taken up by neutrophils than OG1RF (P < or = 0.001). Finally, with restriction digestion and hybridization under high-stringency conditions, the epa gene cluster of OG1RF (which is also present in the sequenced E. faecalis strain V583) was detected in 12 of 12 other clonally distinct E. faecalis strains tested: a similar polysaccharide pattern was detected for the 12 strains on Western blots using an E. faecalis endocarditis patient serum, and sera from four other patients with E. faecalis endocarditis all reacted with polysaccharide extracts of OG1RF. These results indicate that the epa gene cluster is widespread among E. faecalis and confers some protection against human host defenses.  相似文献   

6.
The aggregation substance (AS) surface protein from Enterococcus faecalis has been implicated as an important virulence factor for the development of infective endocarditis. To evaluate the role of antibodies specific for Asc10 (the AS protein from the conjugative plasmid pCF10) in protective immunity to infective endocarditis, an N-terminal region of Asc10 lacking the signal peptide and predicted to be surface exposed (amino acids 44 to 331; AS(44-331)) was cloned with a C-terminal histidine tag translational fusion and expressed from Escherichia coli. N-terminal amino acid sequencing of the purified protein revealed the correct sequence, and rabbit polyclonal antisera raised against AS(44-331) reacted specifically to Asc10 expressed from E. faecalis OG1SSp, but not to other proteins as judged by Western blot analysis. Using these antisera, flow cytometry analysis demonstrated that antibodies to AS(44-331) bound to a surface-exposed region of Asc10. Furthermore, antibodies specific for AS(44-331) were opsonic for E. faecalis expressing Asc10 in vitro but not for cells that did not express Asc10. New Zealand White rabbits immunized with AS(44-331) were challenged intravenously with E. faecalis cells constitutively expressing Asc10 in the rabbit model of experimental endocarditis. Highly immune animals did not show significant differences in clearance of organisms from the blood or spleen or in formation of vegetations on the aortic valve, in comparison with nonimmune animals. Although in vivo expression of Asc10 was demonstrated by immunohistochemistry, these experiments provide evidence that immunity to Asc10 does not play a role in protection from experimental infective endocarditis due to E. faecalis and may have important implications for the development of immunological approaches to combat enterococcal endocarditis.  相似文献   

7.
The present study compared the recently developed multilocus sequence typing (MLST) approach with a well-established molecular typing technique, pulsed-field gel electrophoresis (PFGE), for subspecies differentiation of Enterococcus faecalis isolates. We sequenced intragenic regions of three E. faecalis antigen-encoding genes (ace, encoding a collagen and laminin adhesin; efaA, encoding an endocarditis antigen; and salA, encoding a cell wall associated antigen) and one housekeeping gene (pyrC) of 22 E. faecalis isolates chosen largely for their temporal and geographical diversity, but also including some outbreak isolates. MLST analysis of polymorphic regions of these four genes identified 13 distinct sequence types (STs) with different allelic profiles; the composite sequences generated from the four sequenced gene fragments of individual isolates showed 98.3 to 100% identity among the 22 isolates. We also found that the allelic profiles from two sequences, ace and salA, were sufficient to distinguish all 13 STs of this study. The 13 STs corresponded to 12 different PFGE types, with one previously designated PFGE clone (a widespread U.S. clone of beta-lactamase-producing isolates) being classified into two highly related STs which differed at 2 of 2,894 bases, both in the same allele. MLST also confirmed the clonal relationships among the isolates of two other PFGE clonal groups, including vancomycin resistant isolates. Thus, this pilot study with representative E. faecalis isolates suggests that, similar to PFGE, the sequence-based typing method may be useful for differentiating isolates of E. faecalis to the subspecies level in addition to identifying outbreak isolates.  相似文献   

8.
Ebp are endocarditis- and biofilm-associated pili of Enterococcus faecalis that are also important in experimental urinary tract infections (UTIs). Our analyses, using available genomes, found that the ebp locus is unique to enterococci. In E. faecalis, the ebp locus is very highly conserved and only 1/473 E. faecalis isolates tested lacked ebpABC, while only 1.2% had the bee pilus locus. No other pilus-encoding operon was identified in 55 available genomes, indicating that the vast majority of E. faecalis strains (unlike Enterococcus faecium and streptococci) have a single pilus locus. Surface expression studies showed that Ebp pili were produced in vitro by 91/91 brain heart infusion (BHI) plus serum-grown E. faecalis isolates and that strain OG1RF expressed pili at even higher levels in rat endocarditis vegetations. However, Ebp expression was restricted to 30 to 72% of E. faecalis cells, consistent with a bistability mode of expression. We also evaluated E. faecalis interactions with human platelets and found that growth of E. faecalis in BHI plus serum significantly enhanced adherence to human platelets and that sortase deletion mutants (the ΔsrtA, Δbps, and ΔbpsΔsrtA mutants) were markedly defective. Further studies identified that Ebp pili, but not the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) Ace and Fss2, mediate adherence of E. faecalis to platelets. Taken together, our data show that the immunogenic (in human endocarditis patients) and commonly expressed Ebp pili, which are known to be important for experimental endocarditis, are highly conserved and mediate adherence to platelets, suggesting that Ebp pili may be a reasonable immunotherapeutic target for prevention or possibly treatment of endocarditis caused by this species.  相似文献   

9.
There is evidence to suggest that the virulence of Streptococcus strains in infective endocarditis might be due to the expression of binding sites for the extracellular matrix proteins of damaged valves. In this communication, we draw attention to one laminin-binding protein from a strain of Streptococcus gordonii isolated from a patient with human endocarditis. This 145-kDa protein was found on the cell wall of the bacterium. The level of expression of this binding protein might be regulated by the presence of extracellular matrix proteins: the protein was lacking after in vitro selection of laminin, collagen I, and fibronectin nonbinding variants, and it was recovered after growth of the variants when laminin or collagen I was added to the growth medium. It was also missing after 10 subcultures in minimal medium, indicating some positive control. Furthermore, the 145-kDa protein was recognized as a major antigen by sera from patients treated for streptococcal infective endocarditis, while sera from patients with valvulopathies gave only slight recognition, suggesting an increase of the expression of this protein during infective endocarditis. It was also shown that the 145-kDa protein carried a collagen I-like determinant detected with anti-human collagen I antibodies.  相似文献   

10.
11.
Aggregation substance (AS) of Enterococcus faecalis (E. faecalis), a sex pheromone plasmid encoded cell surface protein, mediates the formation of bacterial aggregates, thereby promoting plasmid transfer. The influence of pAD1-encoded AS, Asa1, on binding to immobilized extracellular matrix proteins was studied. The presence of AS increased enterococcal adherence to fibronectin more than eight-fold, to thrombospondin more than four-fold, to vitronectin more than three-fold, and to collagen type I more than two-fold (P<0.001). In contrast, binding to laminin and collagen type IV occurred independently of AS. Adherence of the constitutively AS expressing E. faecalis OG1X(pAM721) to immobilized fibronectin was found to be approximately five times higher than that of Staphylococcus aureus Cowan and approximately 30 times higher than that of Streptococcus bovis. Investigation of strains with various deletions within the structural gene of asa1 suggests that attachment to immobilized fibronectin is mainly mediated by amino acids within the variable region or by neighbouring residues. Thus, AS may promote adherence to injured epithelium and endothelium, where extracellular matrix proteins are exposed, thereby facilitating colonization and infection.  相似文献   

12.
Enterococci are opportunistic pathogens known to cause numerous clinical infections and complications in humans. Adhesin-mediated binding to extracellular matrix (ECM) proteins of the host is thought to be a crucial step in the pathogenesis of these bacterial infections. Adhesin of collagen from Enterococcus faecalis (Ace) is a cell-wall anchored protein of E. faecalis that has been shown to be important for bacterial binding to the ECM. In this report, we characterize the conditions for Ace expression and demonstrate Ace binding to mammalian epithelial and endothelial cells as well as to collagens found in the ECM. To further characterize Ace expression and function, we report the generation of a panel of monoclonal antibodies (mAbs) directed against this important E. faecalis virulence factor. Through the use of multiple in vitro assays, surface plasmon resonance and flow cytometry, we have characterized this panel of mAbs which may prove to be not only beneficial in studies that address the precise biological role of adhesion of E. faecalis, but may also serve as beneficial therapeutic agents against E. faecalis infections.  相似文献   

13.
We used a two-chamber system to study transcytosis of Enterococcus faecalis across monolayers of human colon carcinoma-derived T84 cells, which show structural resemblance to the native intestine. Among 16 E. faecalis isolates from different sources, the well-characterized strain OG1RF and 8 other isolates (2 endocarditis isolates, 1 urine isolate, and all 5 fecal isolates) showed translocation in this assay, while 6 clinical isolates (3 endocarditis and 3 urine isolates), the recipient strain JH2-2, and the control, Escherichia coli DH5alpha, had no detectable translocation. Of two OG1RF mutants involving the previously studied epa (enterococcal polysaccharide antigen) gene cluster, known to be needed for virulence and resistance to killing by polymorphonuclear leukocytes, one epa mutant (TX5179) was unable to translocate, while TX5180, with an epa disruption farther downstream, showed a moderate decrease in translocation relative to that of the wild-type strain OG1RF (P < 0.01), indicating that the epa gene cluster is important for translocation across a T84 monolayer. This observation was confirmed by complementation of the epa mutant (TX5179) with epa genes and restoration of its translocation ability. In conclusion, we have demonstrated translocation of at least some strains of E. faecalis across T84 monolayers, although strains differ considerably in this ability, and we have demonstrated that epa mutations can cause marked changes in successful translocation. These results suggest that this model may be a useful in vitro system for studying the process of translocation from the intestinal tract.  相似文献   

14.
15.
Enterococcus faecium recently evolved from a generally avirulent commensal into a multidrug-resistant health care-associated pathogen causing difficult-to-treat infections, but little is known about the factors responsible for this change. We previously showed that some E. faecium strains express a cell wall-anchored collagen adhesin, Acm. Here we analyzed 90 E. faecium isolates (99% acm(+)) and found that the Acm protein was detected predominantly in clinically derived isolates, while the acm gene was present as a transposon-interrupted pseudogene in 12 of 47 isolates of nonclinical origin. A highly significant association between clinical (versus fecal or food) origin and collagen adherence (P 相似文献   

16.
17.
Enterococcus (Streptococcus) faecalis expresses three species-specific surface protein antigens of molecular weights 73,000, 40,000, and 37,000. On Western blotting (immunoblotting), they were detected strongly by immunoglobulin G (IgG) in sera from patients with E. faecalis endocarditis, but not in sera from patients with other E. faecalis infections or with endocarditis due to other streptococci. We developed an enzyme-linked immunosorbent assay system to measure IgG, IgM, and IgA levels to these antigens and evaluated its potential as a serodiagnostic test for E. faecalis endocarditis. The test correctly diagnosed E. faecalis endocarditis in 15 of 16 cases. Of 10 cases of endocarditis due to other streptococci and 10 E. faecalis infections other than endocarditis, 9 and 8, respectively, gave negative results. The test should prove particularly useful in culture-negative cases, for which choice of appropriate antibiotic therapy for E. faecalis endocarditis is vital.  相似文献   

18.
19.
Enterococci are a common cause of serious infections, especially in newborns, severely immunocompromised patients, and patients requiring intensive care. To characterize enterococcal surface antigens that are targets of opsonic antibodies, rabbits were immunized with various gentamicin-killed Enterococcus faecalis strains, and immune sera were tested in an opsonophagocytic assay against a selection of clinical isolates. Serum raised against one strain killed the homologous strain (12030) at a dilution of 1:5,120 and mediated opsonic killing of 33% of all strains tested. In addition, this serum killed two (28%) of seven vancomycin-resistant Enterococcus faecium strains. Adsorption of sera with the homologous strain eliminated killing activity. The adsorbing antigens were resistant to treatment with proteinase K and to boiling for 1 h, but were susceptible to treatment with sodium periodate, indicating that the antigen inducing opsonic activity is a polysaccharide. Antibodies in immune rabbit sera reacted with a capsule-like structure visualized by electron microscopy both on the homologous E. faecalis strain and on a vancomycin-resistant E. faecium strain. The capsular polysaccharides from E. faecalis 12030 and E. faecium 838970 were purified, and chemical and structural analyses indicated they were identical glycerol teichoic acid-like molecules with a carbohydrate backbone structure of 6-alpha-D-glucose-1-2 glycerol-3-PO4 with substitution on carbon 2 of the glucose with an alpha-2-1-D-glucose residue. The purified antigen adsorbed opsonic killing activity from immune rabbit sera and elicited high titers of antibodies (when used to immunize rabbits) that both mediated opsonic killing of bacteria and bound to a capsule-like structure visualized by electron microscopy. These results indicate that approximately one-third of a sample of 15 E. faecalis strains and 7 vancomycin-resistant E. faecium strains possess shared capsular polysaccharides that are targets of opsonophagocytic antibodies and therefore are potential vaccine candidates.  相似文献   

20.
Previously, in our laboratory, we established a two-chamber system to study translocation of Enterococcus faecalis across monolayers of polarized human colon carcinoma-derived T84 cells. By using the same system in the present study, we now show that disruption of gelE of strain OG1RF, which also has a polar effect on the cotranscribed sprE, as well as disruption of its regulatory system (fsrA, fsrB, and fsrC) resulted in a loss of detectable translocation by E. faecalis OG1RF; these mutants lost gelatinase (GelE) and serine protease (SprE) production by standard assay. A gelE deletion mutant of OG1RF (GelE- SprE+) also showed that significantly reduced translocation and complementation with the gelE gene (pTEX5438) in trans restored gelatinase and translocation, demonstrating that gelatinase is important for E. faecalis translocation. Complementation of fsrA, fsrB, and fsrC mutants with all three fsr genes also resulted in production of gelatinase and translocation. Furthermore, introduction of fsr genes into two non-gelatinase-producing E. faecalis isolates, the well-characterized laboratory strain JH2-2 and a human-derived fecal isolate, TX1322 (both of which have gelE but not fsrA or fsrB, are gelatinase negative, and do not translocate), resulted in gelatinase production by these strains and restored translocation across T84 monolayers, while transformation with pTEX5438 (gelE) showed little or no translocation and no detectable gelatinase, confirming the importance of both fsr and gelatinase for E. faecalis translocation. The importance of gelatinase production was also corroborated among 20 E. faecalis human isolates (7 fecal, 7 endocarditis, and 6 urine isolates), which showed translocation by all gelatinase-positive isolates but little to no translocation for gelatinase nonproducers. These results indicate that gelatinase is important for the successful in vitro translocation of E. faecalis across human enterocyte-like T84 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号