首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 192 毫秒
1.
具有几何对称性的12参数矩形板元   总被引:6,自引:1,他引:5  
1 引言 三角形板元中,形式最简单的是九参数元,节点参数是单元三个顶点上的函数值和两个一阶偏导数值,非协调九参三角形板元的研究取得了丰硕成果,根据不同方法已构造出多种收敛性能好的单元.相比之下,矩形板元的研究较少见报道.矩形板元中形式最简单的是12参元,节点参数是单元4个顶点上的函数值和两个一阶偏导数值,这类似于九参三角形板元.常见的12参矩形板元是ACM元,其形函数空间是完整3次多项式空间加上两个4次多项式的基函数,ACM元是C°元,但位移形函数的外法向导数平均值在单元间不连续,这类似于Zienkiewicz九参三角形板元,但由于矩形单元的特殊形状,ACM元是收敛的.龙驭球教授等在[1]中提出一种12参矩形广义协调元,其位移形函数的外法向导数平均值在  相似文献   

2.
组合杂交有限元法具有增强低阶位移格式粗网格精度的内在机制,能量误差为零的组合杂交格式可获得改进的粗网络精度,而其中组合参数起着极其重要的作用,采用最简便的四边形位移\应力模式作为对协调双线性Q4—平板元的改进:协调等参双线性位移插值和纯粹常应力模式,通过调整组合参数,得到了组合杂交元的优化型,数值试验表明这种参数一调整型显改进了协调Q4—元,达到粗网格高精度,由于应力参数可在单元水平消去,这种组合杂交改进型的计算量与协调Q4—元相当。  相似文献   

3.
薄板弯曲单元被广泛地应用到工程问题的有限元计算中.然而,由于协调的薄板弯曲位移型单元要求挠度和转角(即位移的函数值和导数值)都是连续的,导致很难直接构造协调的位移型薄板单元.在数学上,样条是满足一定协调性的分片光滑的多项式,有限元的形函数可以视为样条函数.本文基于三角形面积坐标和B网方法,利用三次样条Hermite插值基重构了两个协调的薄板弯曲单元.由于单元形函数是基于四边形构造的,避免了等参变换,可以有效地降低网格畸变对计算精度的影响.  相似文献   

4.
通常情况下,常规位移有限元法获得的应力结果比位移精度低一阶次,且面外应力难以满足连续性要求.联合最小势能原理和H-R变分原理,构造出包含位移和3个面外应力两类变量的20节点六面体辛元.由于两类变量采用高阶插值函数近似,无需引入单元内部的非协调位移项,因此相关理论的推导过程非常简单.与Hamilton部分混合元不同,该辛元涉及的变量沿3个坐标方向均做离散处理,不受单元厚度和结构几何形状的限制.数值实例表明20节点辛元的数值结果收敛稳定.在粗糙网格的情况下,与20节点位移元相比,该文单元的面外应力更接近精确解.  相似文献   

5.
本文把基于虚功原理的杂交有限元模型用于板弯曲问题,构造了一个考虑横向剪应变的任意四边形新型板单元,本单元的突出优点是采用了一种比较合理的位移插值函数,使之能较真实地模拟各类板的变形,且用的自由度最少。文中对此单元作了比较广泛的数值试验,计算结果表明它对板厚有相当宽的适用范围,对于各种例题均能在较粗的网格下得到满意的精度.  相似文献   

6.
广义协调等参元   总被引:7,自引:0,他引:7  
本文根据广义协调条件,对平面应力四边形单元提出一个广义协调等参元GC-Q6.单元GC-Q6是对Wilson非协调等参元Q6的一个改进方案:单元Q6只对平行四边形网格情况能通过分片检验,对一般四边形情况却不能通过,而本文的单元GC-Q6则对一般四边形情况也能通过.当单元为平行四边形时,GC-Q6单元即退化为QS单元.算例表明,广义协调等参元的应力精度高于文献中已有的单元,对不规则网格均能保持良好的性态.  相似文献   

7.
非连续变形分析(discontinuous deformatrion analysis, DDA)通过引入虚拟节理网格将块体离散成子块体系统进行断裂扩展数值模拟.针对这种方法难以获得精确块体应力分布的问题, 提出一种基于无网格法移动最小二乘(moving least squares, MLS)插值的应力恢复算法.利用DDA计算得到的节点位移, 通过恰当构造MLS形函数及其导数, 推导了块体任意点应力的计算公式.数值算例将基于MLS后处理的结果与解析解及平均值法后处理结果进行比较, 验证了所提出方法的精确性和有效性.  相似文献   

8.
无网格法是一种不需要生成网格就可模拟复杂形状流场计算的流体力学问题求解算法.为了提高基于Galerkin弱积分形式的无网格方法求解三维稳态对流扩散问题的计算效率,提出了在空间离散上采用基于凸多面体节点影响域的无网格形函数,并通过选取适当节点影响半径因子避免节点搜索问题,同时减少系统刚度矩阵带宽.计算中当节点影响因子为1.01时,无网格方法的形函数近似具有插值特性且本质边界条件的施加与有限元一样简单.三维立方体区域的稳态对流扩散数值算例表明:在保证计算精度的同时,采用凸多面体节点影响域的无网格方法比传统无网格方法最高可节省计算时间42%.因此从计算效率和精度考虑,在运用无网格方法求解三维问题时建议采用凸多面体节点影响域的无网格方法.  相似文献   

9.
广义有限差分法是一种新型的无网格数值离散方法.该方法基于多元函数泰勒级数展开和加权最小二乘拟合,将控制方程中未知参量的各阶偏导数表示为相邻节点函数值的线性组合,克服了传统有限元等基于网格的方法对网格的依赖性.本文以三维位势问题为例,引入一种新的优化选点技术,克服了传统广义有限差分法在模拟三维复杂几何域问题时遇到的"病态选点问题",极大地提高了该方法的计算精度与数值稳定性.  相似文献   

10.
一种h型自适应有限单元   总被引:2,自引:0,他引:2  
h型自适应有限单元在网格局部细划时.会产生非常规节点,从而破坏了一般意义上的单元连续性假定.本文利用参照节点对非常规单元进行坐标和位移插值.为保证单元之间坐标和位移的连续性,本文提出了一组修正的形函数,常用的形函数是它的一个特例.本方法应用于有限元程序时,除形函数外无须做任何改动.算例表明水文的方法具有方法简单、精度高、自由度少、计算量小等优点.  相似文献   

11.
Typical formulations of thep-median problem on a network assume discrete nodal demands. However, for many problems, demands are better represented by continuous functions along the links, in addition to nodal demands. For such problems, optimal server locations need not occur at nodes, so that algorithms of the kind developed for the discrete demand case can not be used. In this paper we show how the 2-median of a tree network with continuous link demands can be found using an algorithm based on sequential location and allocation. We show that the algorithm will converge to a local minimum and then present a procedure for finding the global minimum solution.  相似文献   

12.
In many numerical algorithms, integrals or derivatives of functions have to be approximated by linear combinations of function values at nodes. This ranges from numerical integration to meshless methods for solving partial differential equations. The approximations should use as few nodal values as possible and at the same time have a smallest possible error. For each fixed set of nodes and each fixed Hilbert space of functions with continuous point evaluation, e.g. a fixed Sobolev space, there is an error–optimal method available using the reproducing kernel of the space. But the choice of the nodes is usually left open. This paper shows how to select good nodes adaptively by a computationally cheap greedy method, keeping the error optimal in the above sense for each incremental step of the node selection. This is applied to interpolation, numerical integration, and numerical differentiation. The latter case is particularly important for the design of meshless methods with sparse generalized stiffness matrices. The greedy algorithm is described in detail, and numerical examples are provided. In contrast to the usual practice, the greedy method does not always use nearest neighbors for local approximations of function values and derivatives. Furthermore, it avoids multiple points from clusters and it is better conditioned than choosing nearest neighbors.  相似文献   

13.
Being able to compute the complete three-dimensional stress state in layered composite shell structures is essential in order to examine complicated interlaminar failure modes such as delamination. We lay out a mixed finite element formulation with independent displacements, rotations, stress resultants and shell strains. A mixed hybrid shell element with 4 nodes and 5 or 6 nodal degrees of freedom is developed, so that the element formulation can also be used for problems with shell intersections. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Given a nonlinear infinite resistive network, an operating point can be determined by approximating the network by finite networks obtained by shorting together various infinite sets of nodes, and then taking a limit of the nodal potential functions of the finite networks. Initially, by taking a completion of the node set of the infinite network under a metric given by the resistances, limit points are obtained that represent generalized ends, which we call ``terminals,' of the infinite network. These terminals can be shorted together to obtain a generalized kind of node, a special case of a 1-node. An operating point will involve Kirchhoff's current law holding at 1-nodes, and so the flow of current into these terminals is studied. We give existence and bounds for an operating point that also has a nodal potential function, which is continuous at the 1-nodes. The existence is derived from the said approximations.

  相似文献   


15.
In this study, we develop an approximate formulation for two‐dimensional nonlinear Sobolev problems by focusing on pseudospectral meshless radial point interpolation (PSMRPI) which is a kind of locally applied radial basis function interpolation and truthfully a meshless approach. In the PSMRPI method, the nodal points do not need to be regularly distributed and can even be quite arbitrary. It is easy to have high order derivatives of unknowns in terms of the values at nodal points by constructing operational matrices. The convergence and stability of the technique in some sense are studied via some examples to show the validity and trustworthiness of the PSMRPI technique.  相似文献   

16.
Summary. In shape optimization problems, each computation of the cost function by the finite element method leads to an expensive analysis. The use of the second order derivative can help to reduce the number of analyses. Fujii ([4], [10]) was the first to study this problem. J. Simon [19] gave the second order derivative for the Navier-Stokes problem, and the authors describe in [8], [11], a method which gives an intrinsic expression of the first and second order derivatives on the boundary of the involved domain. In this paper we study higher order derivatives. But one can ask the following questions: -- are they expensive to calculate? -- are they complicated to use? -- are they imprecise? -- are they useless? \medskip\noindent At first sight, the answer seems to be positive, but classical results of V. Strassen [20] and J. Morgenstern [13] tell us that the higher order derivatives are not expensive to calculate, and can be computed automatically. The purpose of this paper is to give an answer to the third question by proving that the higher order derivatives of a function can be computed with the same precision as the function itself. We prove also that the derivatives so computed are equal to the derivatives of the discrete problem (see Diagram 1). We call the discrete problem the finite dimensional problem processed by the computer. This result allows the use of automatic differentiation ([5], [6]), which works only on discrete problems. Furthermore, the computations of Taylor's expansions which are proposed at the end of this paper, could be a partial answer to the last question. Received January 27, 1993/Revised version received July 20, 1993  相似文献   

17.
In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine the potential on the whole interval and some parameters.  相似文献   

18.
This paper investigates the generalized outer synchronization (GOS) between two non-dissipatively coupled complex dynamical networks (CDNs) with different time-varying coupling delays. Our drive-response networks also possess nonlinear inner coupling functions and time-varying outer coupling configuration matrices. Besides, in our network models, the nodes in the same network are nonidentical and the nodes in different networks have different state dimensions. Asymptotic generalized outer synchronization (AGOS) and exponential generalized outer synchronization (EGOS) are defined for our CDNs. Our main objective in this paper is to design AGOS and EGOS controllers for our drive-response networks via the open-plus-closed-loop control technique. Distinguished from most existing literatures, it is the partial intrinsic dynamics of each node in response network that is restricted by the QUAD condition, which is easy to be satisfied. Representative simulation examples are given to verify the effectiveness and feasibility of our GOS theoretical results in this paper.  相似文献   

19.
有理插值算子的连续性   总被引:1,自引:0,他引:1  
徐国良 《计算数学》1985,7(1):106-111
1.引言 设m,n为给定的非负整数,X={z_i:z_i∈C,0≤i≤s},且z_i彼此互异。所谓有理插值问题,就是对于给定的,寻求有理函数R=P/Q∈R(m,n)(即?(P)≤m,?(Q)≤n)使得 R~(j)(z_i)=y_i~(j),j=0,1,…,k_i;i=0,1,…,s。 (1.1)而与此对应的“线性化”的问题是求P/Q∈R(m,n),使得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号