首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Genetically obese normotensive rats, LA/N-corpulent (cp), were fed ad libitum diets containing either 54% sucrose or cooked corn starch for 12 weeks. Twenty-four rats were used for the study; half were corpulent (cp/cp) and half were lean (cp/+ or +/+). Fasting levels of plasma insulin, glucose, corticosterone, glucagon and growth hormone, and activities of liver and epididymal fat pad glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), and liver and kidney glucose-6-phosphatase (G6Pase), fructose 1,6-diphosphatase (FDPase), and phosphoenolpyruvate carboxykinase (PEPCK) were measured. A significant phenotype effect was observed in insulin, corticosterone, growth hormone, and liver G6PD, ME, FDPase, and kidney PEPCK, G6Pase, FDPase, and epididymal fat pad G6PD and ME (corpulent greater than lean), and glucagon (lean greater than corpulent). Diet effect (sucrose greater than starch) was significant for plasma glucose, liver ME, and kidney G6Pase. Although not significant at the P less than 0.05 level, insulin, corticosterone, liver G6PD and FDPase and kidney FDPase tended to be higher in sucrose-fed rats. This study suggests that the corpulent rat is more lipogenic and gluconeogenic than the lean, and that the hormones responsible are effective in keeping both the lipogenic and gluconeogenic enzyme activity elevated.  相似文献   

2.
1. To compare the impact of type of carbohydrate, genotype and phenotype on the synthesis and levels of plasma lipoprotein protein. Sprague-Dawley rats and carbohydrate-sensitive LA/N-corpulent (cp) rats were fasted (2 days) and then fed diets containing 54% carbohydrate as either sucrose, fructose or cooked cornstarch for 2 days. 2. The amount of 3H-protein present in the VLDL + chylomicron fraction of Sprague-Dawley rats 2 hr after injection of 3H-leucine was affected by type of dietary carbohydrate: sucrose greater than fructose greater than starch. 3. Obese and lean LA/N-cp rats fed diets containing sucrose or fructose had lower concentrations of HDL protein and higher levels of 3H-protein in VLDL + chylomicron fraction than those fed starch. 4. Obese LA/N-cp rats had more HDL protein and higher levels of 3H-protein in VLDL + chylomicron fraction than their lean littermates.  相似文献   

3.
A catabolic and hypolipemic effect of glucagon has been described in normal animals. We therefore studied the role of glucagon in genetically obese, hyperlipemic rats. Twelve genetically obese hyperlipemic LA/N-cp/cp (corpulent) rats and 12 lean littermates were fed either 54% starch or 54% sucrose for 12 weeks. Plasma glucagon and insulin levels and glucagon and insulin binding to liver membranes were measured. Comparing all corpulent and lean animals regardless of diet, a significant (P less than 0.0001) phenotypical effect (cp/cp greater than lean) was observed in plasma insulin levels (464 +/- 54 vs 70.3 +/- 7.6 muu/ml, mean +/- SEM). Insulin binding (2.68 vs 16.1%/50 micrograms protein) and glucagon binding (25.6 vs 47.3%/50 micrograms protein) were both significantly lower (P less than 0.0001) in corpulent rats as compared to their lean littermates. Sucrose feeding had marginal effect on plasma insulin or insulin binding. It, however, decreased glucagon binding in corpulent rats but not in their controls. A significant negative correlation was observed between plasma insulin and insulin binding, while a positive correlation was seen for plasma glucagon and glucagon binding. A significant negative correlation was observed between plasma glucagon and lipogenic enzymes (glucose-6-phosphate dehydrogenase and malic enzyme) in liver and between glucagon binding and these enzymes. We propose that in these genetically obese rats, in addition to hyperinsulinemia, impaired glucagon activity as manifested by decreased glucagon binding to target cells may be an important contributor to the hyperlipemia and obesity. A further decrease in glucagon binding in rats fed sucrose indicates that sucrose, per se, may be an additional contributory factor.  相似文献   

4.
A new congenic strain of rat, the SHR/N-corpulent, provides a good model for noninsulin-dependent diabetes and was used in the present study. Corpulent rats as compared to their lean littermates are obese, hyperlipidemic, and severely hyperinsulinemic, and show an age-dependent loss of glucose tolerance. Mild fasting hyperglycemia is seen only in corpulent rats fed sucrose. Since dietary sucrose is more lipogenic than starch and since insulin and glucagon are involved in lipid and carbohydrate metabolism, we studied the effect of the type of dietary carbohydrate on insulin and glucagon levels and their receptors in lean and corpulent SHR/N rats. A significant phenotypic effect was observed (corpulent greater than lean) on plasma levels of triglyceride, cholesterol, and insulin. Dietary sucrose increased these parameters in corpulent rats but not in lean rats. Insulin and glucagon binding to liver plasma membranes was lower in corpulent rats than in lean; decreases were due to fewer receptors without a significant change in affinity. Thus, in corpulent rats, in addition to hyperinsulinemia, fewer glucagon receptors and their failure to be regulated by plasma glucagon levels appear to contribute to the hyperlipidemia. Furthermore, the hyperglycemia observed in sucrose-fed corpulent rats may be due to extreme resistance to insulin despite lower plasma glucagon and fewer glucagon receptors.  相似文献   

5.
1. Groups of lean and obese LA/N-cp and obese Type II diabetic SHR/N-cp rats were fed semisynthetic diets with or without the alpha-glucosidase inhibitor acarbose (ACB, 100 mg/kg diet, p.o.) from 8 until 15 weeks of age, and measures of fasting serum total cholesterol (TC), insulin (INS), and hepatic HMG-CoA synthase activity determined at the end of the study. 2. ACB was without marked effect on mean food intake in either strain or either phenotype, and resulted in less weight gain and decreased adipose mass in obese LA/N-cp rats. INS was greater in the obese than the lean phenotype of both strains, and ACB resulted in greater reductions in INS in obese LA/N-cp than in obese LA/N-cp rats. 3. Serum TC concentrations were greater in the obese than in the lean phenotype of both strains, and ACB resulted in decreases in TC in both strains and in lower beta:alpha lipoprotein cholesterol ratios in obese LA/N-cp rats. Liver HMG Co-A synthase activity was greater in lean than obese rats and ACB resulted in normalization of enzyme activity in obese LA/N-cp but not SHR/N-cp rats. 4. These results confirm the hypercholesterolemia which occurs in the obese phenotype of the corpulent rat strains, and indicates that ACB may bring about significant reductions in body weight and fatness, TC, and in improved beta:alpha lipoprotein ratios and HMG-CoA synthase activity in obesity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Effects of phenotype, sex, and diet on plasma lipids in LA/N-cp rats   总被引:1,自引:0,他引:1  
The LA/N-corpulent (cp) rat is a recently developed congenic strain which exhibits obesity. The effects of phenotype and sex on serum and lipoprotein lipid content were examined in LA/N-cp rats fed either a control or an atherogenic diet high in saturated fat and protein. Obese rats were pair-fed to equivalent lean animals. Results from this study indicate that sex, phenotype, and diet exert significant effects on plasma and lipoprotein cholesterol content. Plasma cholesterol levels were higher in obese compared with lean rats, females than in males, and rats consuming the atherogenic diet compared with the control diet. Plasma and lipoprotein triglyceride levels were significantly increased only in obese compared with lean animals. The increased plasma cholesterol and triglyceride was observed primarily in the chylomicron and very low density lipoprotein fractions. Increased levels of plasma cholesterol were not a result of increased dietary cholesterol absorption or increased liver cholesterol biosynthesis. These data suggest that LA/N-cp rats can serve as a unique rodent model for the study of the interrelationships between hyperlipidemia, obesity, and coronary heart disease.  相似文献   

7.
1. Groups of lean and obese male SHR/N-cp rats were fed isoenergetic diets containing 54% carbohydrate as cornstarch (CS) or sucrose (SU) plus other nutrients from 5 weeks of age, and measures of adiposity, thyroxine 5' deiodinase (T4-5'DI) activity, and tissue and plasma triiodothyronine (T3) content determined at 9.5 months of age. 2. Body weights (BW) of obese greater than lean, and were greater when fed the SU than CS diet in both phenotypes. Phenotype effects (obese greater than lean) were present for fat pad weights and adipose cellularity in most primary adipose tissue depots, and diet effects (SU greater than CS) were present for epididymal and retroperitoneal depots in both phenotypes. 3. Interscapular brown adipose tissue (IBAT) and IBAT:BW ratios of obese greater than lean, and diet effects (SU greater than CS) were present for lean but not obese rats. Liver T4-5'DI activity and plasma and tissue T3 of lean greater than obese, while IBAT 5'DI activity of obese greater than lean in the CS diet. 4. These results indicate that obesity occurs in the SHR/N-cp rat as the result of hypertrophy and hyperplasia of adipose tissue, and that isoenergetic substitution of simple for complex carbohydrate exaggerates fat accretion in lean but not obese rats. Moreover, the obesity occurs in spite of greater mass, cellularity, and T4-5'DI activity of IBAT, consistent with a thermogenic defect in the obese phenotype of this strain.  相似文献   

8.
1. Groups of lean, obese, and obese-non-insulin-dependent diabetic LA/N-cp and SHR/N-cp rats were administered the a-glucosidase inhibitor Miglitol (150 mg/kg diet, ad libitum) from 8 until 15 weeks of age. 2. Phenotype effects (obese greater than lean) were present for weight gain, adiposity, serum glycemic and lipid parameters, and for liver glucokinase, glucose-6-phosphate dehydrogenase, and malic enzyme activity. Miglitol treatment was associated with improvements in glucokinase and malic enzyme in both strains, and in improvements in glycemic parameters in obese rats. 3. These results are consistent with variable improvements in glycemic control and insulin action following low dose Miglitol treatment, and indicate that indirect effects of the drug on insulin sensitivity in peripheral tissues and on glucoregulatory enzymes may contribute to the glycemic improvements observed with this drug, while greater dosages or longer treatment may be required to observe comparable improvements in adiposity or plasma lipid profiles.  相似文献   

9.
Soybean and its isoflavones have been shown to have beneficial effects on carbohydrate and lipid metabolism and on renal function. Probiotics may potentiate the beneficial effects of isoflavones by converting the inactive isoflavone glycoside to aglycones, which are biologically active, thereby producing a synergistic effect. We therefore studied the effects of soybean isoflavones in the presence and absence of probiotics on glucose and triglyceride metabolism and the peptide hormones involved in their metabolism. Lean and obese SHR/N-cp rats were fed AIN-93 diets containing 0.1% soybean isoflavone mixture, 0.1% probiotics mixture or both. Plasma was analyzed for glucose, triglycerides, parameters of renal function and peptide hormones -- insulin, leptin, glucagon and ACTH -- that are involved in glucose and lipid metabolism. Isoflavones given alone lowered plasma glucose in both phenotypes while triglyceride was decreased only in lean animals. Isoflavones also lowered aspartate amino transferase and alanine amino transferase in both phenotypes. Isoflavones had significant effect on plasma insulin, leptin and glucagon in lean rats but not in obese rats. Thus, our data show that in lean animals, isoflavones have hypoglycemic and hypolipidemic effect, and the effect is mediated by changes in peptide hormones. When lipid levels are very high as in obese rats, isoflavones fail to lower plasma triglyceride levels. Probiotics do not appear to enhance the effect of isoflavones.  相似文献   

10.
Restriction of energy intake significantly reduces mammary tumorigenesis in normal rats exposed to carcinogens. Genetically obese LA/N-cp (corpulent) female rats were given 7,12-dimethylbenz[a]anthracene and fed purified diets ad libitum or restricted to 60% of the ad libitum caloric intake. Phenotypically lean littermates were also fed ad libitum. Obese animals developed large mammary tumors more rapidly than genetically normal rats so that 100% of the animals had tumors in less than 16 weeks. Only 21% of the lean animals developed tumors; the energy restricted obese animals had a tumor incidence of 27%. Although obese rats fed the restricted diet weighed significantly less than those fed ad libitum, percent body fat was not reduced, indicating that lean tissue was affected more. Obese animals were markedly hyperinsulinemic (1003 +/- 193 microunits/ml) and energy restriction reduced this to 328 +/- 41; the lean animals had insulin levels of 12 +/- 2. Tumor-bearing rats had higher insulin levels than rats without tumors. These data suggest that body fatness is not directly associated with risk of carcinogenesis. Lean body mass, adipose tissue mass, and their interaction with insulin in its capacity as a growth factor rather than body fatness per se may be determinants of tumor promotion.  相似文献   

11.
The spontaneously hypertensive/NIH-corpulent (SHR/N-cp) rat is a genetic animal model that exhibits obesity, metabolic features of hyperinsulinemia, hyperglycemia, and hyperlipidemia, which are characteristic of type II diabetes and mild hypertension. To determine the role of leptin, the protein product of the ob gene, in the development of obesity and diabetes in this model, we measured steady-state circulating levels of leptin in obese and lean SHR/N-cp rats and examined the relation between plasma leptin levels and metabolic variables at the stage of established obesity in these animals. Mean fasting plasma leptin concentration was 8-fold higher in obese than in lean rats (p<0.01). This was associated with a 6-fold elevation in plasma insulin in the obese group. Fasting levels of plasma glucose, cholesterol, and triglyceride were all significantly higher in obese rats than in lean controls. Spearman correlation analysis showed a significant positive correlation between plasma leptin concentration and body weight among the animals (r=0.73, p<0.01). Similarly, plasma insulin concentration was significantly correlated with BW in all animals (r=0.54, p<0.05). There was also a significant positive.correlation between plasma leptin and plasma insulin in the entire group (r=0.70, p<0.01). However, this relationship was significant only for lean rats but not for obese rats (r=0.59, p<0.05 for lean rats, and r=0.23, p=NS, for obese rats). Plasma leptin also correlated positively with fasting plasma glucose (r=0.75, p<0.05), total cholesterol (r=0.63, p<0.05), and triglyceride (r=0.67, p <0.05). The marked elevation of plasma leptin in obese SHR/N-cp rats suggests that obesity in this animal model is related to up-regulation of the ob gene. Circulating leptin appears to be one of the best biological markers of obesity and that hyperleptinemia is closely associated with several metabolic risk factors related to insulin resistance in the diabesity syndrome.  相似文献   

12.
Plasma levels of prolactin, growth hormone, glucagon insulin and glucose were measured in non-treated control rats, bromocriptine-treated control rats and GH3-cell-tumor-bearing rats with and without bromocriptine treatment. Bromocriptine treatment increased plasma levels of glucagon, insulin and glucose in control rats. Tumor-bearing rats had increased body weight and increased plasma levels of prolactin, growth hormone, glucagon, insulin and glucose. Bromocriptine treatment reduced body weight and decreased the plasma levels of prolactin, glucagon and insulin, as compared to non-treated tumor-bearing rats. The drug had no effect on plasma levels of growth hormone and glucose. These results indicate that, in GH3-cell-tumor-bearing rats, prolactin, glucagon and insulin are more sensitive to the action of bromocriptine than growth hormone.  相似文献   

13.
The effects of anesthetic agents, commonly used in animal models, on blood glucose levels in fed and fasted rats were investigated. In fed Sprague-Dawley rats, ketamine (100 mg/kg)/xylazine (10 mg/kg) (KX) produced acute hyperglycemia (blood glucose 178.4 +/- 8.0 mg/dl) within 20 min. The baseline blood glucose levels (104.8 +/- 5.7 mg/dl) reached maximum levels (291.7 +/- 23.8 mg/dl) at 120 min. Ketamine alone did not elevate glucose levels in fed rats. Isoflurane also produced acute hyperglycemia similar to KX. Administration of pentobarbital sodium did not produce hyperglycemia in fed rats. In contrast, none of these anesthetic agents produced hyperglycemia in fasted rats. The acute hyperglycemic effect of KX in fed rats was associated with decreased plasma levels of insulin, adrenocorticotropic hormone (ACTH), and corticosterone and increased levels of glucagon and growth hormone (GH). The acute hyperglycemic response to KX was dose-dependently inhibited by the specific alpha2-adrenergic receptor antagonist yohimbine (1-4 mg/kg). KX-induced changes of glucoregulatory hormone levels such as insulin, GH, ACTH, and corticosterone were significantly altered by yohimbine, whereas the glucagon levels remained unaffected. In conclusion, the present study indicates that both KX and isoflurane produce acute hyperglycemia in fed rats. The effect of KX is mediated by modulation of the glucoregulatory hormones through stimulation of alpha2-adrenergic receptors. Pentobarbital sodium did not produce hyperglycemia in either fed or fasted rats. Based on these findings, it is suggested that caution needs to be taken when selecting anesthetic agents, and fed or fasted state of animals in studies of diabetic disease or other models where glucose and/or glucoregulatory hormone levels may influence outcome and thus interpretation. However, fed animals are of value when exploring the hyperglycemic response to anesthetic agents.  相似文献   

14.
1. Groups of lean and corpulent LA/N-cp rats were fed isoenergetic diets containing, 54% carbohydrate as maize starch (MS) or sucrose (SU), 20% protein, 16% mixed fats, plus other essential nutrients and fiber from 1.5-9 months of age. Final body weights of corpulent rats were 2-3 times those of their lean littermates, and were greater with SU than MS diet in both phenotypes. 2. Interscapular brown adipose tissue (IBAT) mass was greater in corpulent than lean and was greater with SU than MS diet in lean but not corpulent rats. IBAT cell diameters and adipocyte volumes were generally similar in both phenotypes, and were not markedly affected by dietary carbohydrate type. 3. Brown adipocyte locularity profiles were qualitatively similar in both phenotypes, and were morphologically indicative of thermogenic activity in both phenotypes. Locule profiles of corpulent animals contained a greater proportion of thermogenically less active types IV and V brown adipocytes than similarly fed lean animals, however, and locule distribution profiles were not influenced by diet. 4. Serum T3 concentrations were similar in both phenotypes, were greater in SU than MS lean rats and were not influenced by diet in the corpulent phenotype. In contrast, serum thyroxine concentrations and percent thyroxine uptake were not influenced by diet or phenotype. 5. These results are consistent with a partial impairment in BAT-mediated thermogenic activity in the corpulent phenotype and suggest that obesity in this strain may be due to factors other than biochemically defective brown adipose tissue thermogenesis.  相似文献   

15.
1. Adipose mass and cellularity were studied in congenic female SHR/N-cp rats fed iosenergetic diets containing 54% carbohydrate as sucrose (SU) or cooked cornstarch (CS), 20% protein, 16% mixed dietary fat plus vitamins, minerals, and non-nutritive fiber ad libitum from 5 weeks until 8.5 months of age. Measures of adipocyte lipid content, cell number per depot, and mass of principal white (WAT) and interscapular brown (IBAT) adipoe tissue depots were determined at the end of the study. 2. Final body weights (BW) of corpulent rats were more than twice those for their lean littermates, and were greater when fed the SU than the CS diet in both phenotypes. Phenotype effects (corpulent greater than lean) were present for fat pad weight, adipocyte number, and adipocyte lipid content in the dorsal (DOR) and retroperitoneal (RP) WAT depots. Diet effects were present for depot weight, adipocyte number, and adipocyte lipid content in both WAT depots, and were of qualitatively similar magnitude in both phenotypes. 3. IBAT weights, IBAT:BW ratios, and IBAT cell number of corpulent greater than lean, and were greater than with SU than CS diet in both phenotypes. 4. These results indicate that obesity in the corpulent phenotype of the SHR/N-cp rat occurs as the result of hypertrophy and hyperplasia of white adipose tissue, and that isoenergetic substitution of simple for complex carbohydrate resulted in greater fat accretion in both phenotypes. The greater diet and phenotype-associated adiposity occurred despite greater mass and cellularity of BAT. The results also indicate that sexual dimorphism occurs regarding effects of diet and phenotype on expression of adipose tissue development in this strain.  相似文献   

16.
The effects of soybean isoflavones with or without probiotics on tissue fat deposition, plasma cholesterol, and steroid and thyroid hormones were studied in SHR/N-cp rats, an animal model of obesity, and were compared to lean phenotype. We tested the hypothesis that probiotics by promoting the conversion of isoflavone glycosides to their metabolically active aglycone form will have a synergistic effect on body fat, cholesterol metabolism, and the endocrine system. Obese and lean SHR/N-cp rats were fed AIN-93 diets containing 0.1% soy isoflavone mixture, 0.1% probiotic mixture, or both together. Different fat tissues were teased and weighed. Plasma was analyzed for cholesterol and steroid and thyroid hormones. In both phenotypes, isoflavones lowered fat deposition in several fat depots. Probiotics alone had no significant effect on fat depots. Isoflavones lowered total, LDL, and HDL cholesterol in lean rats, but in obese rats isoflavones lowered only total and LDL cholesterol. Isoflavones also lowered many of the steroid hormones involved in lipid metabolism but had no significant effect on thyroid hormones. Probiotics had no significant effect on cholesterol or hormones. Thus, our data show that soy isoflavones also lower plasma cholesterol and that this hypocholesterolemic effect appears to be due in part to the modulation of steroid hormones. Probiotics do not seem to enhance the effect of isoflavones.  相似文献   

17.
Plasma concentrations of insulin, corticosterone, T3, T4 and glucose were measured at 6 hour intervals throughout 24 hours in undisturbed, 34-day-old lean (Fa/?) and genetically obese (fa/fa) Zucker rats. fa/fa rats had higher plasma concentrations of insulin at all sampling times and higher plasma concentrations of corticosterone at 0300 and 0900 hours. Neither T3 nor T4 levels differed between phenotypes at any sampling time. Fasting for 24 hours at 34 days abolished the hyperinsulinaemia of fa/fa rats and raised the plasma corticosterone concentrations of both phenotypes. Before weaning there were no phenotypic differences in the plasma insulin or corticosterone concentrations measured at two sampling times in undisturbed rats. Following an intra-gastric glucose load however, fa/fa rats became hyper-insulinaemic compared with similarly treated Fa/? animals. Pancreatic insulin contents were higher in fa/fa rats at 34 days of age, but not before weaning. Somatostatin contents of the pancreas, hypothalamus and cerebral cortex did not differ between phenotypes at either 18 or 34 days of age. In conclusion, the elevated plasma concentrations of insulin and corticosterone in young fa/fa rats may contribute to their greater lipid deposition and lower protein deposition.  相似文献   

18.
Circulating levels of insulin and glucagon, as well as their release from isolated pancreatic islets, have been measured in Zucker rats to examine the effect of genotype, sex and diet. The obese animals had higher plasma insulin levels and enhanced release from islets when compared to lean controls. Conversely, obese animals, despite no significant differences in fed plasma levels of glucagon, showed substantially reduced release from islets. Diet had no main effect on any of these parameters.  相似文献   

19.
B Metzger  S Pek  J Hare  N Freinkel 《Life sciences》1974,15(2):301-308
Plasma glucose, insulin and glucagon were measured in pregnant and age-matched virgin rats in the fed state and after fasting 6, 48 or 120 hours during day 16–21 of gestation. The fed state in pregnancy was characterized by a metabolic setting favoring anabolism. The lower plasma glucose in the fed pregnant rats was associated with higher insulin, slightly lower glucagon and higher insulin/glucose and insulin/glucagon ratios than in virgin rats. During fasting, glucose fell to sustained hypoglycemic levels in the pregnant animals whereas glucose declined but did not achieve hypoglycemia at any point in the virgins. Despite the hypoglycemia, greater levels of plasma insulin persisted in the pregnant throughout the 120 hours of fasting and insulin/glucagon ratios did not differ significantly from the euglycemic virgins. Thus, “accelerated starvation” in pregnancy cannot be ascribed to relative glucagon excess. Rather, the preservation of normal insulin/glucagon ratios despite prevailing hypoglycemia, may provide a mechanism during fasting in pregnancy for restraining maternal protein catabolism in the face of the added fuel demands of the conceptus.  相似文献   

20.
Hepatic activities of rate limiting enzymes in fatty acid and cholesterol synthesis and cholesterol degradation were determined in lean and obese LA/N-cp rats. The hepatic activities of acetyl-CoA carboxylase and fatty acid synthetase, the key enzymes of fatty acid synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase (the rate limiting enzyme in cholesterol synthesis), were increased 2-fold in the obese rats as compared with their lean littermates. In contrast, the activity of cholesterol 7alpha-hydroxylase, the rate limiting enzyme of cholesterol degradation to bile acids, was significantly decreased by 28% in the obese group as compared with the control group. Significantly, compared with the control group, the obese animals exhibited similar magnitudes of differences in the activities of the above enzymes even when they were pair-fed with the control animals. Thus these differences in the obese group are not due to hyperphagia but possibly to hypersecretion of the lipogenic hormone, insulin in this strain. These results indicate that the LA/N-cp obese rat has twice the capacity to synthesize body fat and cholesterol but has a reduced capacity to degrade the cholesterol, leading to increased accumulation of cholesterol and fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号