首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We present an analysis of olivine‐rich exposures at Bellicia and Arruntia craters using Dawn Framing Camera (FC) color data. Our results confirm the existence of olivine‐rich materials at these localities as described by Ammannito et al. ( 2013a ) using Visual Infrared Spectrometer (VIR) data. Analyzing laboratory spectra of various howardite–eucrite–diogenite meteorites, high‐Ca pyroxenes, olivines, and olivine‐orthopyroxene mixtures, we derive three FC spectral band parameters that are indicators of olivine‐rich materials. Combining the three band parameters allows us, for the first time, to reliably identify sites showing modal olivine contents >40%. The olivine‐rich exposures at Bellicia and Arruntia are mapped using higher spatial resolution FC data. The exposures are located on the slopes of outer/inner crater walls, on the floor of Arruntia, in the ejecta, as well as in nearby fresh small impact craters. The spatial extent of the exposures ranges from a few hundred meters to few kilometers. The olivine‐rich exposures are in accordance with both the magma ocean and the serial magmatism model (e.g., Righter and Drake 1997 ; Yamaguchi et al. 1997 ). However, it remains unsolved why the olivine‐rich materials are mainly concentrated in the northern hemisphere (approximately 36–42°N, 46–74°E) and are almost absent in the Rheasilvia basin.  相似文献   

2.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

3.
Oued Awlitis 001 is a highly feldspathic, moderately equilibrated, clast‐rich, poikilitic impact melt rock lunar meteorite that was recovered in 2014. Its poikilitic texture formed due to moderately slow cooling, which judging from textures of rocks in melt sheets of terrestrial impact structures, is observed in impact melt volumes at least 100 m thick. Such coherent impact melt volumes occur in lunar craters larger than ~50 km in diameter. The composition of Oued Awlitis 001 points toward a crustal origin distant from incompatible‐element‐rich regions. Comparison of the bulk composition of Oued Awlitis 001 with Lunar Prospector 5° γ‐ray spectrometer data indicates a limited region of matches on the lunar farside. After its initial formation in an impact crater larger than ~50 km in diameter, Oued Awlitis 001 was excavated from a depth greater than ~50 m. The cosmogenic nuclide inventory of Oued Awlitis 001 records ejection from the Moon 0.3 Ma ago from a depth of at least 4 m and little mass loss due to ablation during its passage through Earth's atmosphere. The terrestrial residence time must have been very short, probably less than a few hundred years; its exact determination was precluded by a high concentration of solar cosmic ray‐produced 14C. If the impact that excavated Oued Awlitis 001 also launched it, this event likely produced an impact crater >10 km in diameter. Using petrologic constraints and Lunar Reconnaissance Orbiter Camera and Diviner data, we test Giordano Bruno and Pierazzo as possible launch craters for Oued Awlitis 001.  相似文献   

4.
Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock‐forming elements. From a circular, polar low‐altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole‐rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg‐rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine‐rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.  相似文献   

5.
We report on the microscopic impactor debris around Kamil crater (45 m in diameter, Egypt) collected during our 2010 geophysical expedition. The hypervelocity impact of Gebel Kamil (Ni‐rich ataxite) on a sandstone target produced a downrange ejecta curtain of microscopic impactor debris due SE–SW of the crater (extending ~300,000 m2, up to ~400 m from the crater), in agreement with previous determination of the impactor trajectory. The microscopic impactor debris include vesicular masses, spherules, and coatings of dark impact melt glass which is a mixture of impactor and target materials (Si‐, Fe‐, and Al‐rich glass), plus Fe‐Ni oxide spherules and mini shrapnel, documenting that these products can be found in craters as small as few tens of meters in diameter. The estimated mass of the microscopic impactor debris (<290 kg) derived from Ni concentrations in the soil is a small fraction of the total impactor mass (~10 t) in the form of macroscopic shrapnel. That Kamil crater was generated by a relatively small impactor is consistent with literature estimates of its pre‐atmospheric mass (>20 t, likely 50–60 t).  相似文献   

6.
The geologic context of red organic‐rich materials (ROR) found across an elongated 200 km region on Ceres is evaluated with spectral information from the multispectral framing camera (FC) and the visible and near‐infrared mapping spectrometer (VIR) of Dawn. Discrete areas of ROR materials are found to be associated with small fresh craters less than a few hundred meters in diameter. Regions with the highest concentration of discrete ROR areas exhibit a weaker diffuse background of ROR materials. The observed pattern could be consistent with a field of secondary impacts, but no appropriate primary crater has been found. Both endogenic and exogenic sources are being considered for these distinctive organic materials.  相似文献   

7.
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the youngest craters on Ceres, exhibits a peculiar “blue” visible to near‐infrared spectral slope, and has distinct color properties as seen in multispectral composite images. In this paper, we investigate a number of spectral indices: reflectance; spectral slopes; abundance of Mg‐bearing and NH4‐bearing phyllosilicates; nature and abundance of carbonates, which are diagnostic of the overall crater mineralogy; plus a temperature map that highlights the major thermal anomaly found on Ceres. In addition, for the first time we quantify the abundances of several spectral endmembers by using VIR data obtained at the highest pixel resolution (~0.1 km). The overall picture we get from all these evidences, in particular the abundance of Na‐ and hydrous Na‐carbonates at specific locations, confirms the young age of Haulani from a mineralogical viewpoint, and suggests that the dehydration of Na‐carbonates in the anhydrous form Na2CO3 may be still ongoing.  相似文献   

8.
Numerous petrologic and geochemical studies so far on the howardite, eucrite, and diogenite (HED) meteorites have produced various crystallization scenarios for their parent body, believed to be the differentiated asteroid 4 Vesta. Structural analyses of diogenites can reveal important insights into postcrystallization deformation on the parent body. Recently published results (Tkalcec et al. 2013 ) of structural analysis on the olivine‐rich diogenite NWA 5480 reveal that it underwent solid‐state plastic deformation, although not at the base of a magma chamber. Dynamic mantle downwelling has been proposed as a plausible deformation mechanism (Tkalcec et al. 2013 ). The purpose of this study is to investigate whether the plastic deformation found in NWA 5480 is an isolated case. We expand the structural analysis on NWA 5480 and extend it to NWA 5784 and MIL 07001,6, two other samples of rare olivine‐rich diogenites, using electron‐backscattered‐diffraction (EBSD) techniques. Our EBSD results show that the diogenites analyzed in this study underwent solid‐state plastic deformation, confirming that the observed deformation of NWA 5480 was not an isolated case on the diogenite parent body. The lattice‐preferred orientations (LPOs) of olivine in NWA 5784 and NWA 5480 are clearly distinct from that typical for cumulate rocks at the base of magma chambers, indicating a different stress environment and a different deformation mechanism. The LPO of olivine in MIL 07001 is less conclusive. The structural results of this study suggest that plastic deformation occurred on the diogenite parent body at high temperatures (1273 < T ≤ 1573 K) in the solid state, i.e., after crystallization of the diogenites themselves, in a dynamic environment with active stress fields.  相似文献   

9.
Here, we construct a comprehensive howardite, eucrite, and diogenite (HED) bulk chemistry data set to compare with Dawn data. Using the bulk chemistry data set, we determine four gamma‐ray/neutron parameters in the HEDs (1) relative fast neutron counts (fast counts), (2) macroscopic thermal neutron absorption cross section (absorption), (3) a high‐energy gamma‐ray compositional parameter (Cp), and (4) Fe abundance. These correspond to the four measurements of Vesta made by Dawn's Gamma Ray and Neutron Detector (GRaND) that can be used to discern HED lithologic variability on the Vestan surface. We investigate covariance between fast counts and average atomic mass (<A>) in the meteorite data set, where a strong correlation (r2 = 0.99) is observed, and we demonstrate that systematic offsets from the fast count/<A> trend are linked to changes in Fe and Ni concentrations. To compare the meteorite and GRaND data, we investigate and report covariance among fast counts, absorption, Cp, and Fe abundance in the HED meteorite data set. We identify several GRaND measurement spaces where the Yamato type B diogenites are distinct from all other HED lithologies, including polymict mixtures. The type B's are diogenites that are enriched in Fe + pigeonite + diopside ± plagioclase, relative to typical, orthopyroxenitic diogenites. We then compare these results to GRaND data and demonstrate that regions north of ~70°N latitude on Vesta (including the north pole) are consistent with type B diogenites. We propose two models to explain type B diogenite compositions in the north (1) deposition as Rheasilvia ejecta, or (2) type B plutons that were emplaced at shallow depths in the north polar region and sampled by local impacts. Lastly, using principal component (PC) analysis, we identify unique PC spaces for all HED lithologies, indicating that the corresponding GRaND measurables may be used to produce comprehensive lithologic maps for Vesta.  相似文献   

10.
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.  相似文献   

11.
The 26 km diameter Nördlinger Ries is a complex impact structure with a ring structure that resembles a peak ring. A first research drilling through this “inner crystalline ring” of the Ries was performed at the Erbisberg hill (SW Ries) to better understand the internal structure and lithology of this feature, and possibly reveal impact‐induced hydrothermal alteration. The drill core intersected the slope of a 22 m thick postimpact travertine mound, before entering 42 m of blocks and breccias of crystalline rocks excavated from the Variscan basement at >500 m depth. Weakly shocked gneiss blocks that show that shock pressure did not exceed 5 GPa occur above polymict lithic breccias of shock stage Ia (10–20 GPa), with planar fractures and planar deformation features (PDFs) in quartz. Only a narrow zone at 49.20–50.00 m core depth exhibits strong mosaicism in feldspar and {102} PDFs in quartz, which are indicative of shock stage Ib (20–35 GPa). Finally, 2 m of brecciated Keuper sediments at the base of the section point to an inverse layering of strata. While reverse grading of clast sizes in lithic breccias and gneiss blocks is consistent with lateral transport, the absence of diaplectic glass and melt products argues against dynamic overthrusting of material from a collapsing central peak, as seen in the much larger Chicxulub structure. Indeed, weakly shocked gneiss blocks are rather of local provenance (i.e., the transient crater wall), whereas moderately shocked polymict lithic breccias with geochemical composition and 87Sr/86Sr signature similar to Ries suevite were derived from a position closer to the impact center. Thus, the inner ring of the Ries is formed by moderately shocked polymict lithic breccias likely injected into the transient crater wall during the excavation stage and weakly shocked gneiss blocks of the collapsing transient crater wall that were emplaced during the modification stage. While the presence of an overturned flap is not evident from the Erbisberg drilling, a survey of all drillings at or near the inner ring point to inverted strata throughout its outer limb. Whether the central ring of the Ries represents remains of a collapsed central peak remains to be shown. Postimpact hydrothermal alteration along the Erbisberg section comprises chloritization, sulfide veinlets, and strong carbonatization. In addition, a narrow zone in the lower parts of the polymict lithic breccia sequence shows a positive Eu anomaly in its carbonate phase. The surface expression of this hydrothermal activity, i.e., the travertine mound, comprises subaerial as well as subaquatic growth phases. Intercalated lake sediments equivalent to the early parts of the evolution of the central crater basin succession confirm a persistent impact‐generated hydrothermal activity, although for less time than previously suggested.  相似文献   

12.
The Visible and Infrared Spectrometer (VIR) instrument on the Dawn mission observed Ceres’s surface at different spatial resolutions, revealing a nearly uniform global distribution of surface mineralogy. Clearly, Ceres experienced extensive water‐related processes and chemical differentiation. The surface is mainly composed of a dark component (carbon, magnetite?), Mg‐phyllosilicates, ammoniated clays, carbonates, and salts. The observed species suggest endogenous, global‐scale aqueous alteration. While mostly uniform at regional scale, Ceres’s surface shows small localized areas with different species and/or variations in abundances. Few local exposures of water ice are seen, especially at higher latitudes. Sodium carbonates have been identified in several areas on the surface, notably in Occator bright faculae. Organic matter has also been discovered in several places, most conspicuously in a large area close to the Ernutet crater. The observed mineralogies, with the presence of ammoniated species and sodium salts, have a strong resemblance to materials found on other bodies of the outer solar system, such as Enceladus. This poses some questions about the original material from which Ceres accreted, suggesting a colder environment for such material with respect to Ceres’s present position.  相似文献   

13.
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta.  相似文献   

14.
Libyan Desert Glass contains meteoritic material and, therefore, its origin is most likely associated with an impact event. However, the impact crater has not been found. We performed numerical simulations of impacts of stony and cometary bodies in order to confirm the version that this glass was formed from silica heated by radiation from aerial bursts near the ground. Asteroids were treated as strengthless bodies from dunite with a density of 3.3 g cm?3, and comets as icy bodies with a density of 1 g cm?3. The simulations based on hydrodynamic equations included the equations of radiation transfer. Melting and vaporization of a silica target under action of radiation incident on a planar surface were modeled using a one‐dimensional hydrodynamic equation of energy and equations of radiation transfer in two‐flux approximation. We selected those variants of simulations in which a crater is not formed, a fireball touches the earth surface, and the area of a molten target corresponds to the area of the Libyan Desert Glass strewn field. Appropriate options include the impact of an asteroid with a diameter of 300 m, an entry speed of 35 km s?1, and an entry angle of 8°, and cometary bodies with diameters from 150 to 300 m, speeds of 50–70 km s?1, and entry angles from 15° to 45°. Impact options with crater formation are also discussed. The maximum depth of molten silica at ground zero reaches 10 cm with the cometary impacts and 3–4 cm with the asteroidal impact. Melting occurs during a period of time from 50 to 400 s.  相似文献   

15.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

16.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

17.
Abstract— Nine howardites and two diogenites were recovered from the Pecora Escarpment Icefield (PCA) in 2002. Cosmogenic radionuclide abundances indicate that the samples are paired and that they constituted an approximately 1 m (diameter) meteoroid prior to atmospheric entry. At about 1 m in diameter, the PCA 02 HED group represents one of the largest single pre‐atmospheric pieces of the Vestan surface yet described. Mineral and textural variations were measured in six of the PCA 02 howardites to investigate meter‐scale diversity of the Vestan surface. Mineral compositions span the range of known eucrite and diogenite compositions. Additional non‐diogenitic groups of Mg‐ and Fe‐rich olivine are observed, and are interpreted to have been formed by exogenic contamination and impact melting, respectively. These howardites contain olivine‐rich impact melts that likely formed from dunite‐ and harzburgite‐rich target rocks. Containing the first recognized olivine‐rich HED impact melts, these samples provide meteoritic evidence that olivine‐rich lithologies have been exposed on the surface of Vesta. Finally, we present a new method for mapping distributions of lithologies in howardites using 8 elemental X‐ray maps. Proportions of diogenite and eucrite vary considerably among the PCA 02 howardites, suggesting they originated from a heterogeneous portion of the Vestan surface. While whole sample modes are dominated by diogenite, the finer grain size fractions are consistently more eucritic. This discrepancy has implications for near‐infrared spectral observations of portions of Vesta’s surface that are similar to the PCA 02 howardites, as the finer grained eucritic material will disproportionately dominate the spectra.  相似文献   

18.
Abstract– A few relatively unbrecciated olivine‐rich diogenites consist of an equilibrium assemblage of olivine and magnesian orthopyroxene (harzburgite). More common diogenites with smaller amounts of olivine are breccias containing two distinct orthopyroxenes—one magnesian and one ferroan. These diogenites are mixtures of a harzburgite lithology that is more magnesian, with the “normal” orthopyroxenite lithology that is ferroan and may contain small amounts of plagioclase. Both lithologies likely formed by fractional crystallization in multiple plutons emplaced within the crust of asteroid 4 Vesta. Minor element trends in orthopyroxenes indicate that these plutons exhibited a range of compositions. We propose a revised taxonomy for the HED (howardites, eucrites, and diogenites) suite where all ultramafic samples are referred to as diogenites. Within this group, the prefixes dunitic, harzburgitic, and orthopyroxenitic are used to distinguish diogenites consisting of more than or equal to 90% olivine, olivine + orthopyroxene, and more than or equal to 90% orthopyroxene, respectively. The prefix polymict is used to describe brecciated mixtures of any of these rock types. The recognition that olivine is a significant phase in some diogenites is consistent with spectral interpretations of olivine in a deeply excavated crater on Vesta, and has important implications for the bulk composition and petrogenesis of that body.  相似文献   

19.
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.  相似文献   

20.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号