首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the effects of physiologic levels of ghrelin on insulin secretion and insulin sensitivity (glucose disposal) in scheduled fed-sheep, using the hyperglycemic clamp and hyperinsulinemic euglycemic clamp respectively. Twelve castrated Suffolk rams (69.8 +/- 0.6 kg) were conditioned to be fed alfalfa hay cubes (2% of body weight) once a day. Three hours after the feeding, synthetic ovine ghrelin was intravenously administered to the animals at a rate of 0.025 and 0.05 mug/kg body weight (BW) per min for 3 h. Concomitantly, the hyperglycemic clamp or the hyperinsulinemic euglycemic clamp was carried out. In the hyperglycemic clamp, a target glucose concentration was clamped at 100 mg/100 ml above the initial level. In the hyperinsulinemic euglycemic clamp, insulin was intravenously administered to the animals for 3 h at a rate of 2 mU/kg BW per min. Basal glucose concentrations (44+/- 1 mg/dl) were maintained by variably infusing 100 mg/dl glucose solution. In both clamps, plasma ghrelin concentrations were dose-dependently elevated and maintained at a constant level within the physiologic range. Ghrelin infusions induced a significant (ANOVA; P < 0.01) increase in plasma GH concentrations. In the hyperglycemic clamp, plasma insulin levels were increased by glucose infusion and were significantly (P < 0.05) greater in ghrelin-infused animals. In the hyperinsulinemic euglycemic clamp, glucose infusion rate, an index of insulin sensitivity, was not affected by ghrelin infusion. In conclusion, the present study has demonstrated for the first time that ghrelin enhances glucose-induced insulin secretion in the ruminant animal.  相似文献   

2.
Hyperinsulinemia and insulin resistance are commonly seen in obese and non-insulin-dependent diabetes mellitus (NIDDM) patients, suggesting a causal link exists between hyperinsulinemia and insulin resistance. In a previous study, we demonstrated that chronic (28 days) intraportal hyperinsulinemia (50% increase in basal insulin levels) resulted in a decrease in insulin action as assessed by a one-step euglycemic hyperinsulinemic clamp. Since only one dose of insulin was used during the clamp, it was not possible to determine if the decrease in insulin action was due to a change in insulin sensitivity and/or maximal insulin responsiveness. In the present study, insulin resistance was induced as before, but insulin action was assessed in overnight fasted conscious dogs using a four-step euglycemic hyperinsulinemic clamp (1, 2, 10, and 15 mU/kg/min). Insulin responsiveness was assessed before the induction of chronic hyperinsulinemia (day 0), and after 28 days of hyperinsulinemia (day 28). Transhepatic glucose balance and whole-body glucose utilization were measured to allow assessment of both the hepatic and peripheral effects of insulin. Chronic hyperinsulinemia increased basal insulin levels from 13 +/- 2 to 21 +/- 4 microU/mL. After 4 weeks of chronic hyperinsulinemia, maximal insulin-stimulated glucose utilization was decreased 23% +/- 4% (P less than .05) and insulin sensitivity (ED50) was not significantly altered. During the four-step clamp, the liver was a major site of glucose utilization. The liver was responsible for 13% of the total glucose disposal rate on day 0 (2.9 mg/kg/min) at the highest insulin infusion rate (15 mU/kg/min; 2,000 microU/mL).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of a new drug (CP 68,722, Pfizer) on parameters of insulin sensitivity in an established insulin-resistant animal model was examined. Rates of hepatic glucose production (HGP) and peripheral glucose uptake in obese Zucker (fa/fa) rats treated with a 10-day course of the medication using a two-step (2 and 10 mU/kg/min) euglycemic hyperinsulinemic clamp technique were measured. In addition, changes in substrate concentrations after drug treatment were examined. Basal HGP rates were similar in the lean versus the obese animals (37 +/- 3 v 39 +/- 3 mumol/kg/min); however, the obese animals had impaired insulin-induced suppression of HGP at both 2 mU/kg/min (36 +/- 3 v 23 +/- 4 mumol/kg/min) and 10 mU/kg/min (18 +/- 5 v 2 +/- 1 mumol/kg/min). Insulin stimulation of glucose disposal was also defective in the obese animals (37 +/- 2 v 88 +/- 7 mumol/kg/min at 2 mU/kg/min and 98 +/- 9 v 219 +/- 18 mumol/kg/min at 10 mU/kg/min). In addition, obese animals had elevated free fatty acid (FFA) and ketone levels, both of which were resistant to insulin-induced suppression. After drug treatment, few alterations in glucose or lipid metabolism were found in the lean animals. In the obese animals, insulin suppression of HGP was normalized during the higher insulin infusion rate (0 v 18 +/- 5 mumol/kg/min at 10 mU/kg/min), and peripheral glucose disposal was enhanced at both steps of the insulin clamp (54 +/- 4 v 37 +/- 2 mumol/kg/min at 2 mU/kg/min and 134 +/- 12 v 98 +/- 9 mumol/kg/min at 10 mU/kg/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary Our previous work has suggested the presence of an insulin resistance in the adult offspring of streptozotocindiabetic pregnant rats. In this study we used the euglycaemic hyperinsulinaemic clamp technique with an isotope-dilution method to define and quantify this postulated insulin resistance in adult offspring of streptozotocin-diabetic rats. Under basal conditions, these rats had a lower body weight than control rats, but their glucose and insulin concentrations were normal. During the hyperinsulinaemic clamp, the steady-state glucose infusion rate was significantly lower in the offspring of streptozotocin-diabetic rats than in both ageand weight-matched controls, indicating insulin resistance. Basal peripheral tissue glucose utilization was normal in the offspring of streptozotocin-diabetic rats, but the dose-response curve was shifted to the right: insulin concentrations causing half-maximal stimulation of glucose utilization were increased by about 60% in the offspring of diabetic rats; the maximal stimulation of glucose utilization, however, was unaltered. Basal hepatic glucose production was normal, but again, half-maximal suppression of glucose production occurred at insulin concentrations 50% higher than in control rats; in addition, the maximal suppression of glucose production was significantly decreased, even at insulin concentrations of 5700 U/ml. These data are evidence for an insulin resistance in the adult offspring of streptozotocin-diabetic rats, characterized by: (1) a decreased insulin sensitivity by peripheral glucose-utilizing tissues, and, (2) a decreased sensitivity and responsiveness of the liver.  相似文献   

5.
Somatostatin does not alter insulin-mediated glucose disposal   总被引:1,自引:0,他引:1  
We examined the effect of somatostatin (SRIH) infusion on insulin-mediated glucose disposal (Rd) in normal young subjects (n = 8) to determine the influence of SRIH on insulin action. Paired 3-h euglycemic insulin clamp studies were performed in random order employing insulin alone (25 mU/m2 X min) or insulin with SRIH (250 micrograms/h) and replacement of basal glucagon (0.4 ng/kg X min). Basal plasma glucose, insulin, glucagon (IRG), and GH concentrations, hepatic glucose production, and Rd were similar on each occasion. Steady state (10-180 min) plasma insulin insulin alone, 283 +/- 10 (+/- SEM); insulin, IRG, and SRIH, 284 +/- 10 pmol/L) and glucagon levels (insulin alone, 84 +/- 7; insulin, IRG, and SRIH, 82 +/- 7 ng/L) were similar. Hepatic glucose production (insulin alone, 0.66 +/- 0.12; insulin, IRG, and SRIH, 0.78 +/- 0.48 mg/kg X min) and Rd (insulin alone, 8.16 +/- 0.62; insulin, IRG, and SRIH, 8.17 +/- 0.61 mg/kg X min) were not different at steady state. We conclude that SRIH infusion with glucagon replacement does not augment insulin-mediated glucose disposal in normal young subjects at physiological insulin levels.  相似文献   

6.
The effects of insulin resistance on glucose and amino acid metabolism were studied in obese nondiabetic women (body mass index [BMI], (32.8 +/- 2) and in lean controls. Glucose disposal rate, hepatic glucose production, and leucine carbon flux and oxidation were simultaneously measured during the postabsorptive state and during euglycemic hyperinsulinemia, by means of primed, constant infusions of D-[6,6-2H2]glucose and L-[1-13C]leucine. Each subject participated in two insulin clamp studies on separate days, at infusion rates of 10 and 40 mU (m2.min)-1, producing plasma insulin levels of 20 to 25 and 70 to 80 microU/mL, respectively. Fat-free mass (FFM) was calculated from underwater weighing measurements. Insulin-mediated glucose disposal rate was significantly slower in the obese group: 2.05 +/- 0.05 versus 3.84 +/- 0.18 mg (kg.min)-1 in controls during the 10-mU insulin clamp, and 3.80 +/- 0.23 versus 9.16 +/- 0.47 mg (kg.min)-1 during the 40-mU clamp. The insulin-induced decrease in plasma levels of branched chain amino acids was also significantly blunted in the obese group. Baseline leucine flux was similar in lean and obese subjects (78 +/- 3 and 71 +/- 2 mumol (kg.h)-1, respectively), and its decline in response to insulin infusion was also comparable (8% and 10% during the 10-mU/m2 clamp, and of 17% and 18% during the 40-mU/m2 clamp in lean and obese, respectively). Basal leucine carbon oxidation (from [13C]leucine and [13C]alpha ketoisocaproate [alpha-KIC] plasma enrichments) was also similar in lean and obese, and did not change significantly with insulin infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study was initiated to see if defects in the ability of physiological hyperinsulinemia (approximately 60 microU/mL) to stimulate glucose uptake in healthy, nondiabetic volunteers are associated with increases in concentrations of plasma glucose and free fatty acid (FFA) when measured at basal insulin concentrations (approximately 10 microU/mL). We recruited 22 volunteers (12 women and 10 men) for these studies, with a (mean +/- SEM) body mass index of 24.8 +/- 0.5 kg/m2. Resistance to insulin-mediated glucose disposal during physiological hyperinsulinemia was determined by suppressing endogenous insulin and determining the steady-state plasma glucose (SSPG) and steady-state plasma insulin (SSPI) concentrations at the end of a 3-h infusion, period during which glucose (267 mg/m2 x min) and insulin (32 mU/m2 x min) were infused at a constant rate. Glucose, insulin and FFA concentrations were also measured in response to infusion rates of glucose (50 mg/m2 x min) and insulin (6 mU/m2 x min). The SSPI concentration (mean +/- SEM) during physiological hyperinsulinemia was 64 +/- 3 microU/mL), in contrast to 12 +/- 0.4 microU/mL during the basal insulin study. The results demonstrated a significant relationship between SSPG concentration in response to physiological hyperinsulinemia (SSPG60) and SSPG(Basal) (r = 0.57, P < 0.01) and FFA(Basal) (r = 0.73, P < 0.001). Furthermore, FFA(Basal) and SSPG(Basal) were significantly correlated (r = 0.47, P < 0.05). Comparison of the seven most insulin-resistant and seven most insulin sensitive individuals (SSPG60 values of 209 +/- 16 vs. 64 +/- 8 mg/dL) revealed that the insulin-resistant group also had significantly higher SSPG(Basal) (105 +/- 5 vs. 78 +/- 7 mg/dL, P < 0.01) and FFA(Basal) (394 +/- 91 vs. 104 +/- 41, P < 0.02) concentrations. However, random fasting plasma glucose and FFA concentrations of the two groups were not different. The results presented demonstrate that individual differences in the ability of elevated insulin concentrations to stimulate muscle glucose disposal are significantly correlated with variations in insulin regulation of plasma glucose and FFA concentrations at basal insulin concentrations.  相似文献   

8.
Possible extrapancreatic effects of glyburide on insulin action were studied in six patients with insulin-dependent diabetes mellitus. Each patient was studied on two separate occasions with continuous iv infusions of either glyburide (0.3 mg/h after a 1-mg iv bolus dose) or NaCl. During the studies blood glucose concentrations were controlled by a glucose-controlled infusion system (Biostator). The study included the 12-h period after the evening meal, followed by a 4-h period during which euglycemic hyperinsulinemic clamp studies were performed at two rates of insulin infusion: 1 and 10 mU/kg.min. During the glyburide infusion, the Biostator-determined insulin delivery rate was similar to that during the NaCl infusion for the first 6 h after the meal, but it decreased by 32% between the 6th and 12th hours after the meal. During the hyperinsulinemic clamp studies, glucose was delivered at a significantly higher rate when glyburide was infused; this was true for both rates of insulin infusion [5.6 +/- 1.9 (+/- SD) vs. 3.6 +/- 1.4 mg/kg.min and 12.1 +/- 2.4 vs. 9.1 +/- 2.1 mg/kg.min; P less than 0.05, glyburide vs. NaCl, respectively]. Plasma C-peptide was undetectable in all patients during both studies. These results indicate that 1) glyburide has an acute effect on insulin action in insulin-dependent diabetic patients; and 2) this effect occurs at physiological as well as pharmacological insulin concentrations.  相似文献   

9.
The effects of moderate hyperthyroidism on insulin action were studied in five growing sheep (42 kg live weight [LW]) by the euglycemic hyperinsulinemic clamp technique, with insulin infused at rates of 0.33, 1.00, and 6.00 mU/kg LW/min over successive 2-hour periods. Animals were injected with saline (control) or thyroxine (15 micrograms/kg LW/d) for 21 days and measurements performed during the final 7 days of each period. Thyroxine (T4) treatment elevated plasma T4 less than threefold and plasma triiodothyronine (T3) twofold. T4 treatment elevated basal plasma glucose concentration (P less than .01) and insulin metabolic clearance rate at the highest rate of insulin infusion (P less than .05). The maximal insulin-induced increase in glucose metabolic clearance rate (responsiveness) was unaffected by T4 treatment, but the insulin concentration for a half-maximal response (sensitivity) was lowered during T4 treatment (122 v 58 microU/mL, P less than .05). Insulin infusion failed to completely suppress endogenous glucose output; T4 treatment had no effect. Insulin caused dose-dependent reductions in circulating concentrations of alpha-amino N, alanine, D-3-hydroxybutyrate, and glycerol, but not nonesterified fatty acids (NEFA). T4 treatment increased the sensitivity and responsiveness of alpha-amino N and alanine concentrations to insulin, the sensitivity of D-3-hydroxybutyrate (all P less than .05), and the responsiveness of glycerol to insulin (P less than .01). Thus moderate hyperthyroidism in growing sheep modifies the ability of insulin to regulate metabolism.  相似文献   

10.
Peripheral and hepatic insulin antagonism in hyperthyroidism   总被引:3,自引:0,他引:3  
Eight hyperthyroid and eight normal subjects underwent 2-h oral glucose tolerance tests (OGTT) and euglycemic clamp studies to assess the presence of peripheral and hepatic insulin antagonism in hyperthyroidism. Although the mean total glucose area during the OGTT was similar in the hyperthyroid patients and normal subjects [16.4 +/- 0.8 (+/- SE) vs. 15.8 +/- 0.7 mmol/L.h], the mean insulin area was significantly elevated in the hyperthyroid group (1413 +/- 136 vs. 1004 +/- 122 pmol/L.h; P less than 0.05). Basal hepatic glucose production was measured during the second hour of a primed [3-3H]glucose infusion. A two-insulin dose euglycemic clamp study with [3-3H]glucose and somatostatin (500 micrograms/h) was carried out during the next 6 h. The insulin infusion rate was 0.05 mU/kg.min during the third, fourth, and fifth hours and 0.60 mU/kg.min during the sixth, seventh, and eighth hours. Hepatic glucose production and glucose utilization were measured during the final 0.5 h of each clamp period. Serum C-peptide concentrations were measured in the initial sample and in the last sample of each clamp period. The mean equilibrium serum insulin concentrations were similar in both groups during the final 0.5 h of the low (90 +/- 8 vs. 79 +/- 6 pmol/L) and high (367 +/- 11 vs. 367 +/- 15 pmol/L) insulin infusion rates. Basal serum C-peptide levels were significantly increased in the hyperthyroid patients (596 +/- 17 vs. 487 +/- 43 pmol/L; P less than 0.05) but were suppressed equally in both groups at the end of both clamp periods. The MCRs of insulin were similar in the hyperthyroid and normal subjects during the low (6.7 +/- 1.1 vs. 5.6 +/- 0.5 mL/kg.min) and high (11.9 +/- 0.4 vs. 12.1 +/- 0.5 mL/kg.mm) insulin infusion rates. Glucose production was significantly increased in the hyperthyroid patients during the basal state (17.6 +/- 0.9 vs. 11.5 +/- 0.5 mumol/kg.min; P less than 0.001) and remained elevated during the final 0.5 h of the low (12.1 +/- 1.1 vs. 5.9 +/- 1.7; P less than 0.01) and high (3.2 +/- 1.2 vs. 0.5 +/- 0.3; P less than 0.05) insulin infusion rates. Peripheral insulin action, assessed by Bergman's sensitivity index, was significantly decreased in the hyperthyroid patients (7.4 +/- 2.2 vs. 15.6 +/- 2.1 L/kg min-1/pmol/L; P less than 0.02). In conclusion, hyperthyroidism is characterized by 1) hyperinsulinemia after oral glucose loading, 2) increased basal hepatic glucose production, 3) impairment of insulin-mediated suppression of hepatic glucose production, and 4) antagonism to insulin-stimulated peripheral glucose utilization.  相似文献   

11.
Summary Insulin resistance is present in patients suffering from lipoatrophic syndromes long before the onset of diabetes mellitus. Thus, the decreased peripheral glucose disposal may not be the only mechanism of hyperglycaemia. The kinetic parameters of glucose homeostasis were evaluated in six young females aged 15, 16, 18, 19 and 24 years with generalized lipoatrophy; one patient was studied both at 12 and 15 years. Insulin resistance was evaluated in vivo by the hyperinsulinaemic euglycaemic clamp (3–4 insulin infusion rates from 1 to 100 mU/kg · min). All patients showed a rightward shift of the dose-response curve, indicating decreased insulin sensitivity. In two patients, maximal glucose disposal was moderately decreased, while in five patients it was dramatically reduced (3.6–6.9 mg/kg · min). Fasting plasma glucose was variable (4.3–18.3 mmol/l) and did not correlate with peripheral glucose disposal rates. Hepatic glucose production, measured by infusion of [6,6-2H] glucose, varied from 1.7 to 8.3 mg/kg · min and was significantly correlated with fasting plasma glucose. The overproduction of glucose despite basal hyperinsulinism suggested hepatic insulin resistance, which was confirmed by the abnormal response to constant unlabelled glucose infusion (2 mg/kg · min) in five patients. In conclusion, impaired glucose tolerance seems to develop in generalized lipoatrophy with aggravated peripheral insulin resistance. The present data show that fasting hyperglycaemia is mainly the consequence of increased hepatic glucose production.  相似文献   

12.
INTRODUCTION. We previously demonstrated increases in β-adrenergic receptor (β-AR) density in rat liver, in association with increased β-AR-mediated stimulation of glucose output in rat hepatocytes, during senescent aging. We therefore hypothesized that pharmacologic β-adrenergic stimulation might induce insulin resistance and glucose output in liver of aging rats in vivo. METHODS. In this study, pancreatic clamps were performed on young adult (4-month-old) and senescent (24-month-old) Fischer 344 male rats by infusing somatostatin (3 μg/kg/min) at time 0 to inhibit insulin secretion, and then infusing insulin (1 mU/kg/min) to replace basal insulin concentrations. At time 0 rats also received either the β-AR agonist isoproterenol (100 ng/kg/min) or saline (control). After 120 min the insulin infusion rate was increased to 4 mU/kg/min for an additional 120 min. Tritiated glucose was infused throughout the study to measure glucose turnover rates. RESULTS AND CONCLUSION. The results of the pancreatic clamp studies demonstrated that under saline control conditions hepatic glucose production (HGP) was suppressed during hyperinsulinemia in both young and old rats, with a trend toward reduced insulin sensitivity in the older animals. Isoproterenol infusion impaired insulin-induced suppression of HGP in both age groups. The results suggest that β-AR stimulation by isoproterenol increases HGP and acutely induces hepatic insulin resistance in both young and old rats. A similar role for β-adrenergic-mediated hepatic insulin resistance in aging humans would suggest a novel therapeutic target for the treatment or prevention of glucose dysregulation and diabetes developing with advancing age.  相似文献   

13.
We examined whether obesity must first exceed a critical threshold before it begins to impair insulin action in volunteers with normal glucose tolerance. Forty-nine healthy volunteers, whose ideal body weight ranged from 80-240%, underwent euglycemic clamps during sequential insulin infusions of 0.4, 1.0, and 10 mU/kg.min. Insulin sensitivity was assessed by estimation of the plasma insulin concentration that produced half-maximal glucose disposal (EC50). Glucose disposal during the highest insulin infusion was used as an index of maximal insulin responsiveness. There was a significant correlation between body mass index and insulin sensitivity (EC50) best fitted by a straight line that broke at a body mass index of 26.8 kg/m2 (P less than 0.05). Below this breakpoint (26.8 kg/m2), there was no significant correlation (r = 0.1), whereas above the breakpoint there was a strong positive correlation (r = 0.8; P less than 0.001) between EC50 and body mass index. In contrast, insulin responsiveness was not significantly correlated with body mass index (r = 0.1). We conclude that insulin sensitivity for glucose disposal is impaired in human subjects with normal glucose tolerance who exceed a critical threshold of obesity, which corresponds to an ideal body weight of 120%. This threshold is consistent with the nonlinear (J-shaped) relationship between obesity and its other adverse health consequences, and may have important implications for desirable weight goals.  相似文献   

14.
The effect of an intravenous infusion of glucose on plasma triglyceride (TG) concentration in fed rats was determined in order to partially elucidate the mechanism of diabetes-induced hypertriglyceridemia. Glucose infused at 8 mg/kg per min caused the plasma TG concentration to be elevated significantly when compared to controls infused with saline alone. In rats which were euglycemic (clamped, insulin infused at 2.5 mU/kg per min), plasma TG concentration remained constant throughout the glucose infusion period (8 mg/kg per min). Hyperglycemic rats infused with insulin (2.5 mU/kg per min) as well as with glucose (16 mg/kg per min) were also hypertriglyceridemic. Infusion of insulin alone did not change the concentration of plasma TG over a 150 min period. Glucose was also infused (8 mg/kg per min) with somatostatin (1 micrograms/kg per min) to block endogenous production of insulin. Somatostatin infusion did not suppress glucose-induced hypertriglyceridemia. For all treatments, the net change in TG concentration was found to positively correlate with the net change in plasma glucose concentration at 150 min after the infusions (r = 0.83, P less than 0.001). The higher TG concentration in the glucose infused, hyperglycemic clamp and glucose plus somatostatin groups reflected an increased rate of TG secretion, in the presence of a lower concentration of plasma free fatty acids. These results suggest that in a non-fasted state, acute hyperglycemia increases plasma TG by stimulating hepatic TG secretion, in a manner which is independent of either plasma insulin or free fatty acids levels.  相似文献   

15.
Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg.min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 +/- 0.1 to 2.5 +/- 0.3 mM, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance.  相似文献   

16.
Obesity is associated with impaired insulin action in glucose disposal, but not necessarily in other aspects of intermediary metabolism or insulin clearance. Sixteen morbidly obese and 14 normal-weight subjects (body mass index, 51.2 +/- 11.5 v 22.1 +/- 2.2 kg.m-2; mean +/- SD) were studied with sequential, low-dose, incremental insulin infusion with estimation of glucose turnover. In obese patients, basal plasma insulin was higher (10.5 +/- 3.8 v 2.4 +/- 3.0 mU.L-1, P less than .001) and remained elevated throughout infusion (F = 492, P less than .001), as did C-peptide (F = 22.7, P less than .001). Metabolic clearance rate for insulin (MCRI) at the highest infusion rate was similar (1,048 +/- 425 v 1,018 +/- 357 mL.m-2.min-1, NS). Basal hepatic glucose production in obese subjects was less than in normal-weight subjects (270 +/- 108 v 444 +/- 68 mumol.m-2.min-1, P less than .01), as was the basal metabolic clearance rate for glucose (MCRG, 77 +/- 26 v 108 +/- 31 mL.m-2.min-1, P less than .05). Insulin infusion caused blood glucose to decrease less in the obese patients (1.4 +/- 0.5 v 1.9 +/- 0.5 mmol.L-1, P less than .05); hepatic glucose production was appropriately suppressed in them by hyperinsulinemia, but their insulin-mediated glucose disposal was reduced (1.67 [0.79] v 4.45 [2.13] mL.m-2.min-1/mU.L-1, P less than .01). Concentrations of nonesterified fatty acids (NEFA), glycerol, and ketones were elevated throughout the insulin infusions in obese patients, despite the higher insulin concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To determine whether the dawn phenomenon occurs in normal elderly subjects and thus contributes to the progressive mild fasting hyperglycemia of aging, we examined the effect of physiological insulin levels on glucose disposal and hepatic glucose production (HGO) between 0530 and 0800 h, and 0930 and 1200 h. Paired euglycemic insulin clamp studies (8 mU/m2 X min) were performed on healthy old subjects (n = 5), employing [3H]glucose methodology to measure glucose production and disposal rates. Basal plasma insulin, GH, glucagon, and cortisol levels, and HGO and glucose disposal rates were similar before each study. Steady state plasma insulin values were slightly, but not significantly, lower during the dawn study [dawn: 20.3 +/- 1.1 (SE); control: 23.5 +/- 2.1 microU/ml, P = 0.08]. Insulin clearance rates were higher during the dawn study (dawn: 523 +/- 16; control: 430 +/- 19 ml/m2 X min, P less than 0.01). Maximum glucose disposal rates (dawn: 3.10 +/- 0.24; control: 3.03 +/- 0.23 mg/kg X min) and minimum HGO levels (dawn: 0.83 +/- 0.09; control: 0.62 +/- 0.03 mg/kg X min) were not significantly different in each part of the study. There was a significant decrease in plasma GH during the dawn (P less than 0.01, analysis of variance) but not the control studies. There was no difference in cortisol levels during the euglycemic clamp between the dawn and control studies. The mean decrement in glucagon during the insulin infusion was similar in each part of the study. We conclude that the dawn phenomenon does not occur in healthy elderly subjects despite an increase in insulin clearance during the dawn period.  相似文献   

18.
Tissue sensitivity to insulin (euglycemic insulin clamp technique), hepatic glucose production (3-[3H]glucose infusion) and insulin binding to erythrocyte receptors were studied in 14 newly diagnosed type 1 diabetic patients after the disappearance of ketosis and after 3 months of insulin therapy. The control group consisted of 14 normal subjects. During the two insulin clamp studies, plasma glucose in the diabetic patients was maintained at 5.0 +/- 0.04 (SEM) mmol/liter and 4.9 +/- 0.05 mmol/liter, with corresponding steady state free insulin levels of 90 +/- 4 mU/liter, and 67 +/- 6 mU/liter (P less than 0.02) during the first and second study, respectively. The decline in free insulin levels was due to the development of insulin antibodies during insulin therapy (10 +/- 0.1% vs. 18 +/- 2%, P less than 0.001, serum insulin-binding capacity during the first and second study, respectively). In the normal subjects, steady state plasma glucose and insulin levels were 4.9 +/- 0.1 mmol/liter and 89 +/- 4 mU/liter, respectively. The rate of glucose metabolism (M) in the diabetic patients during the first study (5.13 +/- 0.65 mg/kg X min) was 35% lower than that in the normal subjects (7.94 +/- 0.50 mg/kg X min, P less than 0.005). After 3 months of insulin therapy, M increased by 35% to 6.92 +/- 0.58 mg/kg X min, which was comparable to that in the normal subjects. To compensate for the difference in plasma free insulin levels, we calculated an index for insulin sensitivity by dividing M by the ambient insulin concentration (I). During the 3 months of insulin therapy, M/I rose 2-fold to 11.63 +/- 1.10 mg/kg X min per mU insulin/liter X 100, which was similar to that in normal subjects (9.16 +/- 0.67 mg/kg X min per mU insulin/liter X 100). Five diabetic patients had a partial clinical remission, as determined by normal fasting C-peptide levels. In these patients, insulin sensitivity was 35-50% greater than in those who failed to have a remission (P less than 0.05). Basal hepatic glucose production in the diabetic patients during the first study (2.78 +/- 0.14 mg/kg X min) was 56% higher than in the normal subjects (1.78 +/- 0.04 mg/kg X min, P less than 0.001), and remained unchanged during insulin therapy. During the hyperinsulinemia induced by the clamp, hepatic glucose production was totally suppressed in both the diabetic and control subjects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The influence of continuous sc insulin infusion therapy for 6 weeks on sensitivity to insulin (euglycemic clamp technique) and hepatic glucose production (3-[3H]glucose technique) was measured in 10 type 1 diabetic patients whose mean duration of diabetes was 8 yr. Mean diurnal blood glucose fell from 8.5 +/- 0.8 (SEM) mmol/liter to 6.0 +/- 0.6 mmol/liter (P less than 0.05) and glycosylated hemoglobin from 10.5 +/- 0.4% to 8.7 +/- 0.3%. Insulin requirements declined by 23% from 47 +/- 4 U/day prepump to 36 +/- 2 U/day after 6 weeks of pump therapy (P less than 0.01). During the insulin clamp, plasma insulin was maintained at approximately 90 mU/liter and plasma glucose at approximately 5.0 mmol/liter in all studies. The rate of glucose metabolism in diabetic patients during conventional therapy (4.65 +/- 0.41 mg/kg X min) was 35% lower than in normal subjects (7.20 +/- 0.42 mg/kg X min, n = 14, P less than 0.001). After 6 weeks of pump therapy, total glucose uptake increased by 27% to 5.90 +/- 0.60 mg/kg X min, P less than 0.05 vs. prepump). This was still 18% lower than in the normal subjects (P less than 0.05). Basal hepatic glucose production in the diabetic patients during conventional therapy (3.07 +/- 0.14 mg/kg X min) was 70% higher than in the normal subjects (1.79 +/- 0.07 mg/kg X min, n = 7, P less than 0.001). After 6 weeks of pump therapy, hepatic glucose production fell to 2.48 +/- 0.19 mg/kg X min (P less than 0.05), which was still 40% higher than in the normal subjects (P less than 0.01). Basal hepatic glucose production was directly related to the fasting plasma glucose level (r = 0.67, P less than 0.001) and inversely proportional to fasting insulin concentration (r = -0.48, P less than 0.05) in the diabetic patients. Specific tracer insulin binding to erythrocytes in the diabetic patients (19.4 +/- 1.5%) was comparable to that in the normal subjects (19.6 +/- 1.2%) and remained unchanged during pump therapy. Thus the improved metabolic control resulting from pump therapy is associated with enhancement in sensitivity to insulin, and reduction in basal hepatic glucose production.  相似文献   

20.
The present knowledge about zinc deficiency and insulin-sensitivity is not yet established. Using three groups of rats fed zinc-depleted diet (ZD) zinc adequate diets, either Pair Fed or ad libitum for a six weeks period, we measured the glucose turn over by the euglycaemic hyperinsulinaemic clamp technique coupled with tritiated glucose as tracer. The basal hepatic glucose production (HGP) and insulinaemia were lower in zinc-depleted rats. At a low rate of insulin infusion (0.6 mU/min/rat) the zinc-depleted rats did not show any difference in hepatic insulin sensitivity compared with the pair-fed animals. At high level of insulin rate (3 mU/min/rat; 9 mU/min/rat), the zinc-depleted rats exhibited a lower glucose uptake compared to the two control groups (Pair-fed and Ad libitum animals). This peripheral insulin resistance is therefore related to a modification of insulin receptors, or post receptors events in zinc deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号