首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on local raw materials, a range of LiZnMg aluminosilicate glasses were prepared to investigate the influence of TiO2, Cr2O3, and ZrO2 on the crystallization behaviour and thermal expansion characteristics. Differential thermal analysis showed that the crystallization propensity increases in the order TiO2 > Cr2O3 > ZrO2. Virgilite, β-spodumene ss, gahnite, enstatite and cristobalite were formed in the prepared glass-ceramics. The microstructure of glass-ceramic samples showed growths of rounded and subrounded grains in the base sample, whereas, somewhat rod-like and accumulated growths appeared in samples containing ZrO2. However, a rather homogeneous texture of accumulated growths was developed in glass-ceramics containing TiO2 and Cr2O3. The coefficient of thermal expansion of parent glasses was sensitive to the type of nucleating agent added (Cr2O3 > TiO2 > ZrO2) varying from 24.8 × 10−7 to 65.1 × 10−7 °C−1 being almost unchanged with the heat-treatment. The microhardness values of glass-ceramic samples were in the 763–779 kg/mm2 range.  相似文献   

2.
The reaction and microstructure at the interface of MgO–Cr2O3 brick and the molten slag of MgO–Al2O3–SiO2–CaO–FetO after static slag corrosion at 1823–1923 K for various times and the resulting microstructure were investigated and characterized. After the static slag corrosion at 1923 K for 4 h, the XRD results show the major phases of periclase MgO, MgCr2O4 spinel, and CaMgSiO4 as the minor phase. MgCr2O4 phase causes MgO to form a discontinuous phase in MgO–Cr2O4 brick. After static slag corrosion at 1923 K for 4 h, SEM micrographs show that brick interior cracks, MgO and dissolved MgO. MgO dissolved due to the molten plag penetrated into the brick interior and reaction with it, leading to a localized dissolution of brick slag. TEM micrographs and ED patterns demonstrate that the minor phase of (Mg, Fe)(Al, Cr)2O4 precipitates in the MgCr2O4 matrix.  相似文献   

3.
采用固相法制备不同摩尔 Ba、Sr、Ca、Mg 配比的 Ba O–Sr O–Ca O–Mg O–Al2O3–SiO2 (BSCMAS)陶瓷材料,研究多组元陶瓷的制备工艺、显微结构及其抗 CMAS 腐蚀性能。结果表明:通过调控 MgO 的含量,在 1 400 ℃条件下制备了Ba0.3Sr0.3Ca0.35Mg0.05Al2Si2O8 (B0.3S0.3C0.35M0.05AS)单相多组元陶瓷材料。在 1 250、1 300 ℃和 1 350 ℃对 B0.3S0.3C0.35M0.05AS 进行 CMAS 腐蚀实验,相比于 Ba0.5Sr0.5Al  相似文献   

4.
In the frame of the Generation IV Sodium Fast Reactor (SFR) safety studies, a core catcher with a sacrificial material could be placed at the bottom of the nuclear reactor. Its role is to dilute the (U, Pu)O2 molten fuel in case of a hypothetical core meltdown accident. A Al2O3–HfO2 ceramic is a candidate for the sacrificial material. To understand how the molten fuel would mix with this sacrificial material, the UO2–Al2O3–HfO2 system was investigated at CEA Cadarache PLINIUS corium platform. The eutectic position of the UO2–Al2O3–HfO2 was determined: the eutectic temperature is 1728±22 °C (2001±22 K) and the eutectic composition is 30 wt% UO2–35 wt% Al2O3–35 wt% HfO2. Then, the pseudo-binary UO2–(50 wt% Al2O3–50 wt% HfO2) phase diagram has been proposed.  相似文献   

5.
Autothermal reforming of methanol for hydrogen production was investigated over ZnO–ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2–ZrO2). CeO2–ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO–ZnCr2O4/CeO2–ZrO2 and ZnO–ZnCr2O4 catalysts were characterized by XRD, TEM, H2-TPR and XPS. The results show that CeO2–ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.  相似文献   

6.
Micro-crystallization of the chalcogenide glass 40GeSe2–50As2Se3–10PbSe has been studied in order to obtain infrared transmitting glass ceramics. Differential scanning calorimetry, IR transmission spectroscopy, X-ray diffraction, scanning electronic microscopy and thermal dilatancy have been used for characterizing the crystallization process. Performing thermal treatment on the glass sample at 250 °C (40 °C higher than Tg) for 10 h, we obtained a glass ceramic containing well-dispersed micro-crystals (<50 nm) and the obviously decreased thermal expansion coefficient.  相似文献   

7.
The mechanochemical behavior of TiO2–B2O3–Mg–Al quaternary system to synthesize various composite nanopowders was studied. A mixture of boron oxide and titanium dioxide powders along with different amounts of magnesium and aluminum was milled using a high-energy planetary ball mill to persuade necessary conditions for the occurrence of a mechanically induced self-sustaining reaction (MSR). Results showed that the formation of composite nanopowders was influenced strongly by the reducing agents content. In the absence of Al (100 wt% Mg), TiB2 nanopowder was formed after 34 min of milling. In the presence of x wt% Mg–y wt% Al (x=40 and 70; y=100−x), mechanical activation was completed after 37–40 min which caused the formation of TiB2–MgFe0.6Al1.4O4 composite nanopowders. In the case of 10 wt% Mg–90 wt% Al, a ternary nanocomposite (TiB2–MgAl2O4–Al2O3) was produced after 43 min of milling. Besides, Al2O3–TiB2 nanocomposite was formed after 90 min of milling in the absence of Mg (100 wt% Al). From the SEM images, mechanochemical process reached a steady state after short milling times where the particles have become homogenized in size and shape. The reaction mechanism steps were proposed to clarify the reactions occurring during mechanochemical process.  相似文献   

8.
Development of lightweight refractories has been in high demand and the matrix of these materials is crucial for its slag resistance. This paper focuses on the relationship between the microstructure and the resistance coefficient of the Al2O3–MgO castables matrix. The permeability experiments were carried out, and the porous media model was adopted to describe both the viscous and inertial resistance. In addition, the effect of the MgO micropowder content is also discussed. Results indicate an improvement in the properties influenced by sintering such as bulk density and apparent porosity. Further, the pore size distribution range becomes narrower and the average pore size decreases when MgO micropowder content is fixed in the range 3–4.5 wt%. Moreover, the pore size is more crucial than the apparent porosity for the penetration resistance of the matrix. The relationship between the viscous resistance coefficient of the matrix and the microstructure parameters, fluid properties, and flow has been established to gain a better understanding of the slag penetration process.  相似文献   

9.
A crystallizer was built and a procedure developed to accurately measure the eutectic solubility lines where ice and salt coexist in equilibrium with the solution, for potential application of Eutectic Freeze Crystallization. The eutectic solubility lines of the ternary system NaHCO3–Na2CO3–H2O were determined experimentally and calculated with the extended UNIQUAC model. The extended UNIQUAC model describes the experimental data quite well. Anhydrous NaHCO3 and Na2CO3·10H2O were the only two types of crystals present in equilibrium with ice crystals in the ternary system. At the quadruple point NaHCO3 and Na2CO3·10H2O are in equilibrium with a solution of about 4.34 wt% of Na2CO3 and 4.77 wt% of NaHCO3 at −3.32 °C. The anhydrous NaHCO3 crystals were needle shaped with lengths between 5 and 10 μm, that were agglomerated into particles of about 100–300 μm, while the Na2CO3·10H2O crystals were hexagonally shaped with sizes between 100 and 500 μm.  相似文献   

10.
The present work explores the sub-solidus phase relations in the CeO2–DyO1.5–ZrO2 ternary system. About 80 compositions in Zr1−xDyxO2−x/2, Ce1−xDyxO2−x/2, (Ce0.8Zr0.2)1−xDyxO2−x/2, Zr1−x(Ce0.2Dy0.8)xO2−0.4x, Cex(Dy0.5Zr0.5)1−xO1.75+x/4 systems, were synthesized and explored to investigate the phase fields in this ternary system. Detailed XRD analysis showed the existence of a variety of phase fields viz. Fluorite-type cubic, C-type cubic, biphasic fields containing both F-type and C-type phases as well as co-existence of two different fluorite type phases. A few compositions also showed the presence of monoclinic as well the tetragonal phases. The trends observed in cell parameter are found to be governed by the competing factors of average ionic radius and the repulsion between excess anions in the lattice due to the aliovalent substitution. This ternary system showed the existence of a very wide cubic phase field. This ternary phase relation has relevance to the inert matrix fuel concept.  相似文献   

11.
Calcium–magnesium–alumina–silicate (CMAS) corrosion significantly affects the durability of thermal barrier coatings (TBCs). In this study, Y2O3 partially stabilized ZrO2 (YSZ) TBCs are produced by electron beam-physical vapor deposition, followed by deposition of a Pt layer on the coating surfaces to improve the CMAS resistance. After exposure to 1250 °C for 2 h, the YSZ TBCs were severely attacked by molten CMAS, whereas the Pt-covered coatings exhibited improved CMAS resistance. However, the Pt layers seemed to be easily destroyed by the molten CMAS. With increased heat duration, the Pt layers became thinner. After CMAS attack at 1250 °C for 8 h, only a small amount of Pt remained on the coating surfaces, leading to accelerated degradation of the coatings. To fully exploit the protectiveness of the Pt layers against CMAS attack, it is necessary to improve the thermal compatibility between the Pt layers and molten CMAS.  相似文献   

12.
Core–shell particles of SiO2/ZrO2 were developed using a sol–gel process. Spherical core particles of SiO2, 320 nm in diameter, were initially prepared using tetraethylorthosilicate (TEOS), and then uniformly shelled with ZrO2 nano-particles synthesized with zirconium(IV) butoxide (TBOZ). The deposition of ZrO2 nano-particles on the SiO2 core particles was generally promoted when increasing the H2O and TBOZ concentrations and temperature of the sol–gel process. However, micron-sized homo-aggregates of ZrO2 were formed above certain concentrations of H2O and TBOZ due to self-aggregation of the nano-ZrO2 particles. It was very interesting to discover that a chemical bonding between zirconium and silicon bridged by oxygen (Si–O–Zr bond) was developed during the formation of the ZrO2 shell around the core particles, as the silane groups on the core particles were condensed with zirconium hydroxyl groups during the deposition of ZrO2. XPS and FT-IR confirmed the chemical bonding of Si–O–Zr in the core–shell particles.  相似文献   

13.
The AC conductivity of glass samples of composition 60V2O5–5P2O5–(35−x)B2O3xDy2O3, 0.4≤x≤1.2 has been analyzed. The samples were prepared by the usual melt-quench technique. The prepared compounds were analyzed by X-ray diffraction (XRD) and thermo gravimetric–differential thermal analysis (TG/DTA). The activation energies were evaluated using glass transition temperature (Tg) and peak temperature of crystallization (Tc) from TG/DTA. The dependence of activation energy on composition was discussed. The electrical conductance and capacitance were measured over a frequency range of 20 Hz to 1 MHz and a temperature range of 303–473 K; these reveal semiconducting features based predominantly on an ionic mechanism. The dielectric and complex-impedance response of the sample is discussed. The relaxation time was found to increase with increasing temperature. Jonscher's universal power law is applied to discuss the conductivity. The electrode polarization was found to be negligible and confirmed from electrical modulus.  相似文献   

14.
The porous reaction-bonded silicon nitride (RBSN) bodies using (6 wt.% Y2O3–2 wt.% MgO) 6Y2M were fabricated by nitridation process at 1350 °C for 8 h. The porous gas pressure sintered (GPSed)-RBSN bodies post-sintered at 1550–1850 °C for 6 h show a microstructure with low aspect ratios having high porosity. The compressive strength of samples sintered at 1650 °C, 1750 °C and 1850 °C were about 146 MPa, 251 MPa and 285 MPa, respectively. The duration time for sintering had a significant effect on the microstructure and grain morphology of the GPSed-RBSN bodies. Even though the GPSed-RBSN was carried out at the comparatively low temperature (1550 °C) for 9 h, high aspect ratio of rod-like Si3N4 grains with about 9 was observed. The material properties of samples such as porosity, phase ratio (β/(α + β)) and compressive strength of sample sintered at 9 h were about 43.2%, 99% and 141 MPa, respectively.  相似文献   

15.
Multiferroic ceramics in BaO–Y2O3–Fe2O3–Nb2O5 system were synthesized and their dielectric, ferroelectric and magnetic properties were evaluated. XRD results showed that the ceramic composite consists of a major phase of tetragonal tungsten bronze structured Ba2YFeNb4O15, and minor phases of monoclinic YNbO4 and hexagonal Ba3Fe2Nb6O21. Three dielectric relaxations were observed in the temperature range from 125 to 575 K. The relaxor dielectric behavior in the temperature range from 125 to 350 K was attributed to the random occupation of Fe3+ and Nb5+ ions at B site of the tungsten bronze structure. The electrode polarization and the inhomogeneous structure contributed to the high-temperature and middle-temperature dielectric relaxations, respectively. Both the ferroelectric hysteresis loop and the magnetic hysteresis loop were measured, which suggested that the synthesized ceramic composite was a promising candidate of multiferroics.  相似文献   

16.
In the last years, the addition of silicon to hydroxyapatite and tricalcium-phosphate materials is being widely studied, due to the well-known influence of silicon on bone formation. Silicocarnotite (Ca5(PO4)2SiO4) presents a structure type carnotite, very close to hydroxyapatite, with a wide range of Ca2+, SiO44− and PO43− solid solutions. These characteristics make silicocarnotite attractive as potential biomaterial.  相似文献   

17.
Glass–ceramic materials based on diopside [CaMgSi2O6]–wollastonite [CaSiO3]–fluoroapatite [Ca5(PO4)3F]–sodium silicate [Na2SiO3] system with TiO2 or ZnO additives were successfully prepared and examined in vitro, by using a simulated body fluid (SBF) solution, to be suitable for restorative dental and bone implant materials. In vitro bioactivity of the glass–ceramics was examined by using scanning electron microscopy equipped with energy dispersive X-ray detectors (EDAX–SEM) and inductive coupled plasma emission spectroscopy (ICP).  相似文献   

18.
An experimental strategy was developed to obtain Si–Ti–Zr transparent sols via the sol-gel process. The chelating agents isoeugenol (2-methoxy-4-propenylphenol, isoH), salicylaldehyde (2-hydroxybenzaldehyde, salH), and itaconic anhydride (2-methylenesuccinic anhydride, anhH) were employed separately to stabilize monomeric Ti and Zr precursors, in order to control their chemical reactivity, avoiding precipitation. In all cases a prehydrolyzed tetraethyl orthosilicate (TEOS) sol was the Si source. The sols were polymerized at room temperature (293 K) to obtain gels and these were dried and calcined at 873 K in air. The radial distribution functions (RDF) of the gels were obtained at room temperature. The solids were studied by scanning electron microscopy (SEM). The porosity and surface area of solids were determined by N2 adsorption. The surface area results obtained range between 83–198 m2/g. The average pore diameters are 1.44–1.61 nm.  相似文献   

19.
采用高温熔制法制备了含复合晶核剂的CaO–MgO–Al2O3–SiO2(CMAS)微晶玻璃,并借助差热分析、X射线衍射、扫描电子显微镜分析了复合晶核剂组成对CMAS微晶玻璃的析晶和性能的影响规律。结果表明:复合晶核剂CaF2+TiO2能使CMAS玻璃的析晶活化能E降至329.2kJ/mol,且促进晶体快速生长;CaF2+P2O5可促进大量晶核生成,使晶体生长指数n增至2.87,从而实现CMAS玻璃整体析晶;CMAS微晶玻璃的主晶相为钙长石和透辉石,形状为长条状,TiO2和ZrO2的加入对主晶相种类和形状没有影响,但P2O5加入后玻璃不能析出透辉石晶相,而是辉石晶相,并产生许多细小晶粒;含复合晶核剂的微晶玻璃均具有较高Vicker硬度(7.0GPa以上),但引入CaF2+TiO2+P2O5时,微晶玻璃的Vicker硬度较低,这主要是晶粒排列不致密所致。  相似文献   

20.
Glasses of the composition 19Li2O–20PbO–20B2O3–30SiO2–(10−x) Bi2O3–1Fe2O3: xIn2O3 with six values of x (0 to 5.0) were synthesized. Dielectric properties viz., dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, electric modulus, M(ω) over wide ranges of frequency and temperature and also dielectric break down strength have been studied as a function of In2O3 concentration. The temperature dispersion of real part of dielectric constant, ε′(ω) has been analyzed using space charge polarization model. The dielectric loss (and also the electric moduli) variation with frequency and temperature exhibited relaxation effects and these effects were attributed to the divalent iron ion complexes. The ac conductivity exhibited maximal effect, whereas the activation energy for the conductivity demonstrated minimal magnitude at about 1.0 mol% of In2O3. The conductivity mechanism is understood due to the polaronic transfer between Fe2+ and Fe3+ ions. The low temperature ac conductivity mechanism is explained following the quantum mechanical tunneling model. Spectroscopic studies viz., optical absorption and ESR spectra have revealed that the redox ratio (Fe2+/Fe3+) is maximal when the concentration of In2O3 is ~1.0 mol%. The higher values of dielectric parameters observed at 1.0 mol% of In2O3 are attributed to the presence of iron ions largely in divalent state and act as modifiers. The analysis of these results together with spectroscopic studies has indicated that when In2O3 is present in the glass matrix in higher concentrations (more than 1.0 mol%) iron ions predominantly exist in trivalent state, occupy substitutional positions and make the glass more rigid. Such enhanced rigidity of the network is causing the decrease of dielectric parameters with the concentration of In2O3. Finally it is concluded that In2O3 mostly participate in the glass network in octahedral positions and make act as reducing agent (for iron ions) in the studied glass matrix when its concentration is ≤1.0 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号