首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用浸渍法在活性炭上负载铁制备催化剂Fe/AC,用于催化臭氧氧化水中内分泌干扰物双酚A(BPA),研究了Fe/AC/O3体系的协同效应,探讨了Fe/AC投加浓度、臭氧浓度和BPA初始浓度等工艺参数的作用规律,并分析了Fe/AC/O3体系在不同pH值下的催化反应机制。结果表明,在Fe/AC/O3体系下,反应60 min后,BPA和COD的去除率分别为97.44%和69.47%,效果明显优于臭氧体系的70.15%、30.89%和活性炭体系的14.69%、7.53%之和,具有明显的协同作用;Fe/AC/O3体系降解BPA符合一级反应动力学,当Fe/AC的投加浓度为5.0 g/L,臭氧浓度为15.0 mg/L,BPA初始浓度为50.0 mg/L时,Fe/AC/O3体系降解BPA的反应速率常数为0.05972 min-1;其反应机制受溶液pH值的影响,在酸性条件下是吸附和臭氧直接氧化共同作用,而在碱性条件下以·OH间接氧化为主,活性炭上负载的Fe3+促进了·OH的生成,大大提高了BPA的反应效率和矿化率。  相似文献   

2.
水厂深度处理工艺中臭氧投加量探讨   总被引:1,自引:1,他引:0  
臭氧生物活性炭深度处理是降低水中微量有机物的关键净化工艺。为确定臭氧的合理投加量,利用小试装置开展了臭氧氧化对砂滤池出水的研究。结果表明:随着臭氧投加量的增加,CODMn、总有机碳(TOC)的去除率均有所增加,但幅度弱于UV254;当臭氧的投加量达到3.0 mg/L时,臭氧氧化后的生物可降解溶解性有机碳(BDOC)可增加30%以上,UV254与TOC的比值趋于稳定;砂滤出水的溴离子浓度为100~300μg/L的情况下,当臭氧的投加量达到3.5 mg/L时仍未检测到溴酸盐。综上所述黄浦江原水水厂深度处理工程运行时,臭氧的投加剂量控制在2.5~3.5 mg/L是安全合理的。  相似文献   

3.
《分离科学与技术》2012,47(7):1477-1492
Abstract

Ozonation was found to be effective for the decolorization of solutions, but has only a slight effect on TOC removal. On the other hand, adsorption on activated carbon improves the TOC removal, but the progressive uptake of the organic contaminants during the adsorption process decreases its removal efficiency. Decolorization, mineralization, and ozone consumption of colored solutions were evaluated under continuous operation in a column by three different processes: ozonation, adsorption on a fixed activated carbon bed, and ozonation in the presence of the activated carbon bed. The introduction of an ozone flow in a fixed activated carbon bed enhances both the decolorization of the solutions and mainly the mineralization of the organic matter, even when the activated carbon was previously partially saturated. Activated carbon acts both as an adsorbent and as a catalyst in the ozonation of colored solutions. The column configuration plays an important role in the performance of this system. The configurations in series and with activated carbon in the upper part of the column showed the highest colour and TOC removal for dye solutions.

The results obtained clearly show that the combination of ozone and activated carbon is a promising technique for the final treatment of colored effluents. Practical applicability of this process was validated by treating two industrial textile effluents, collected after two different biological treatments.  相似文献   

4.
颗粒活性炭催化臭氧氧化法降解焦化废水有机物   总被引:3,自引:0,他引:3  
以COD和挥发酚作为焦化废水中有机物的指标,探讨了颗粒活性炭催化臭氧氧化法对有机物的处理效果、活性炭的催化效果和最佳投加量。结果表明添加颗粒活性炭能有效提高臭氧对焦化废水中的COD和挥发酚的降解效果,颗粒活性炭投加量为20g/L时,COD的去除率提高了20%。通过颗粒活性炭吸附试验可以明确颗粒活性炭在臭氧,活性炭系统中的主要作用是催化作用,活性炭的吸附作用只是催化反应的中间过程,基本不会影响有机物的最终去除率。活性炭投加量(10—25g/L)越大,其催化效果越好,但考虑到费用与效益,以20g/L为宜。活性炭作为催化剂重复使用四次后,其催化效果未明显下降。  相似文献   

5.
Sulfamethoxazole (SMX), one pharmaceutical compound, has been treated in aqueous solutions with catalysts (copper and cobalt type perovskites and cobalt–alumina) and promoters (activated carbons). Hydrogen peroxide and saturated carboxylic acids were identified as intermediates. The effects of adsorption and pH have been investigated. Removal of the starting SMX accomplished with ozone alone is a fast process but catalytic or promoted ozonation is needed to significantly reduce the resulting organic carbon. SMX is, thus, mainly removed through direct ozone reaction while hydroxyl radical oxidation is the mechanism of removal the remaining TOC. The kinetics of the process has also been investigated. Perovskite catalytic ozonation resulted to be a chemical control process and apparent rate constants for homogeneous and heterogeneous ozonation were determined. For activated carbon ozonation, external diffusion of ozone to solid particles controlled the process rate.  相似文献   

6.
The investigation of heterogeneous catalytic ozonation of sulfosalicylic acid (SSal) in aqueous solution is reported in this paper. It was found that catalytic ozonation in the presence of V-O supported on silica gel had a more positive effect on the removal rate (62% in 30 min) of total organic carbon (TOC) than that of ozonation alone (20% in 30 min), and the catalyst supported on TiO2 had similar results. The experimental results also showed that the ozone dosage should be sufficient for achieving the catalytic effect. Efficient removal of TOC in catalytic ozonation was probably attributed to producing more powerful oxidants than molecular ozone.  相似文献   

7.
活性炭负载催化剂臭氧催化氧化处理印染废水研究   总被引:10,自引:2,他引:8  
以堇青石蜂窝陶瓷、硅藻土、活性氧化铝和活性炭作为载体、金属氧化物(FexOy、CuO、NiO、MnxOy、BaO)作为催化活性组分,对臭氧催化氧化印染废水进行了试验对比,并对影响载铁型活性炭催化剂臭氧催化氧化印染废水的因素进行了研究。结果表明,载铁型的催化剂活性相对较高,当焙烧温度为750℃时,催化性能最好。利用载铁型活性炭催化剂,在臭氧质量浓度为10mg/L、pH值为6、反应时间为60min的条件下,催化氧化具有最佳的效果,COD去除率达86%;催化剂的重复利用性好,连续使用12次,COD的去除率仍可达64%。  相似文献   

8.
采用多相催化臭氧化技术在实验室条件下去除采油废水中的COD。考察了催化剂的种类、吸附作用和投加量以及pH、反应时间、HCO3-和CO32-对多相催化臭氧化去除采油废水COD的影响。试验最佳工艺条件为:臭氧质量浓度为80 mg.L-1、催化剂为A3、催化剂投加量为1 000 mg.L-1、pH为10.8和反应时间为50 min。结果表明,在最佳工艺条件下,采用A3/O3氧化工艺处理采油废水,COD去除率可达到79.40%,比O3、A1/O3和A2/O33种氧化工艺对COD的去除率分别提高了33.00%、14.00%和18.10%,出水COD为118.450 mg.L-1,达到了国家污水综合排放标准的二级排放标准;催化剂对采油废水中的有机物具有一定的吸附作用;pH对反应影响显著,pH越大越有利于COD的去除;COD去除率随反应时间的延长其增幅逐渐减小,最终趋于平衡;HCO3-和CO32-对多相催化臭氧化去除COD的效果具有很大的抑制作用,在HCO3-和CO32-质量浓度为200 mg.L-1时,COD去除率分别为39.89%和27.59%,比HCO3-和CO32-质量浓度为0 mg.L-1时的COD去除率分别降低了39.51%和51.81%,试验还发现,CO32-对自由基的抑制作用强于HCO3-。这在某种程度上证明了多相催化臭氧化对有机物的降解遵循羟基自由基氧化机理。  相似文献   

9.
苯、甲苯、乙苯和二甲苯(BTEX)是煤化工废水中典型的难降解有机污染物,通常情况下BTEX较难通过传统的化学氧化技术去除。笔者自主制备了多孔臭氧催化剂,并对催化剂进行表征分析;考察了催化臭氧化降解BTEX的最佳反应条件,并对不同反应体系中自由基的激发情况进行比对;在此基础上探究催化臭氧化对BTEX的去除机理,为BTEX在实际处理过程中的技术应用提供理论基础。XRD分析结果表明,多孔臭氧催化剂含有氧化铝、氧化硅等,且含有沸石结构的化合物。XPS分析结果表明,所合成的催化剂含Si、O、Cu、Fe、Mn、Al等元素。SEM结果表明,催化剂由许多不规则的细小块状粉末构成,且表面非常蓬松,堆叠成多级结构,使催化剂呈多孔性。比表面积分析表明,催化剂的比表面积为20.8 m^2/g,孔隙直径主要集中在3.8 nm。使用该催化剂对BTEX进行催化臭氧化试验,结果表明,反应温度为30℃、溶液pH=8、臭氧投加量为3.5 mg/L、催化剂投加量为5 g/L时,BTEX的降解效果最佳。在该反应体系中有机物去除率为99.1%,其中苯、甲苯、乙苯、二甲苯的去除率分别为95.6%、98.2%、100%、100%。ESR分析结果表明,催化臭氧化反应体系中羟基自由基和超氧自由基的激发强度明显高于臭氧氧化反应体系,这是因为本文制备的催化剂含有Al、Fe、Mn、Cu氧化物,使催化反应过程中负载的金属氧化物价态间相互变化,转移的电子可促进臭氧分子分解,从而产生更多的自由基。催化臭氧化技术是以羟基自由基为主导,超氧自由基、催化剂吸附为辅助,协同实现煤化工废水中典型有机污染物BTEX的高效去除。  相似文献   

10.
近几年,在各地的饮用水中不断检测到微量布洛芬,其环境毒性引起了广泛关注。选用工业硅铁作为催化剂,催化臭氧氧化去除水中的布洛芬,并通过单因素试验,确定了反应体系的最佳条件。结果表明,在硅铁的作用下,催化臭氧氧化可以明显提高布洛芬的去除率。在硅铁投加量为1 g/L、水溶液初始pH值为8、臭氧浓度9.0 mg/L、布洛芬初始浓度为10 mg/L时,经过80 min,水样总有机碳(TOC)的去除率可达75.5%,较单独臭氧氧化提高了38.0%。将碳酸氢钠作为自由基抑制剂加入反应体系,可明显降低TOC的去除率,间接证明了催化臭氧氧化布洛芬的反应遵循自由基机理。  相似文献   

11.
Two methods based on the use of granular activated carbon (GAC) and ozone to remove organic compounds from water have been investigated. Both methods have been applied to degrade an aqueous solution of gallic acid and a secondary effluent from a wastewater treatment plant (WWTP). One of the methods, namely catalytic ozonation, implies simultaneous ozonation and adsorption onto GAC. This process takes advantage of the oxidizing power of ozone and the adsorption capacity of GAC but also of the catalytic transformation of ozone into secondary oxidants on the GAC surface. The efficiency of catalytic ozonation was compared to those of single adsorption and single ozonation. It was found that the catalytic process highly improves the conversion of total organic carbon (TOC) and makes a more efficient use of ozone than the single ozonation process. To illustrate the reusability of the catalyst, the GAC was reused four times through a series of consecutive experiments. No loss of catalytic activity was observed when treating the WWTP effluent but some deactivation could be appreciated when treating the aqueous solution of gallic acid. This deactivation could be attributed to some porosity destruction and surface oxidation produced as a result of reactions of aqueous ozone on the GAC surface. The other method investigated is an adsorption-regeneration process (namely GAC/O3-regeneration) that comprises two steps: dynamic adsorption onto GAC and further regeneration of the spent GAC with gaseous ozone. The adsorption stage of the GAC/O3-regeneration experiments was carried out in a continuous flow adsorption column and breakthrough curves were obtained. It was observed that the GAC used in this work adsorbed gallic acid very efficiently but exhibited limited capacity to remove chemical oxygen demand (COD) from the WWTP effluent. The optimum ozone dose to regenerate the spent GAC after gallic acid adsorption was found to be about 0.4 g O3/g GAC, with results showing around 90% regeneration efficiency. As a result of incomplete regeneration, the GAC adsorption capacity progressively decreased with the number of adsorption–regeneration cycles. The GAC/O3-regeneration method was not successful at treating the WWTP effluent as low adsorption uptake was observed. Moreover, the GAC became damaged after regeneration because of excessive oxidation of its surface.  相似文献   

12.
The applicability of a sequential process of ozonation and ozone/hydrogen peroxide process for the removal of soluble organic compounds from a pre-coagulated municipal sewage was examined. 6–25% of initial T-CODCr was removed at the early stage of ozonation before the ratio of consumed ozone to removed T-CODCr dramatically increased. Until dissolved ozone was detected, 0.3 mgO3/mgTOC0 (Initial TOC) of ozone was consumed. When an ozone/hydrogen peroxide process was applied, additional CODCr was removed. And we elucidated that two following findings are important for the better performance of ozone/hydrogen peroxide process; those are to remove readily reactive organic compounds with ozone before the application of ozone/hydrogen peroxide process and to avoid the excess addition of hydrogen peroxide. Based on these two findings, we proposed a sequential process of ozonation and multi-stage ozone/hydrogen peroxide process and the appropriate addition of hydrogen peroxide. T-CODCr, TOC and ATU-BOD5 were reduced to less than 7 mg/L, 6 mgC/L and 5 mg/L, respectively after total treatment time of 79 min. Furthermore, we discussed the transformation of organic compounds and the removal of organic compounds. The removal amount of CODCr and UV254 had good linear relationship until the removal amounts of CODCr and UV254 were 30 mg/L and 0.11 cm?1, respectively. Therefore UV254 would be useful for an indicator for CODCr removal at the beginning of the treatment. The accumulation of carboxylic acids (formic acid, acetic acid and oxalic acid) was observed. The ratio of carbon concentration of carboxylic acids to TOC remaining was getting higher and reached around 0.5 finally. Removal of TOC was observed with the accumulation of carboxylic acids. When unknown organic compounds (organic compounds except for carboxylic acids) were oxidized, 70% was apparently removed as carbon dioxide and 30% was accumulated as carboxylic acids. A portion of biodegradable organic compounds to whole organic compounds was enhanced as shown by the increase ratio of BOD/CODCr.  相似文献   

13.
Ozone and activated carbon (AC) have been used on the removal of 17α-ethynylestradiol (ETOL), a pharmaceutical compound, and its oxidation by-products. Although single ozonation is not able to totally remove the by-products formed from the degradation of the parent compound (about 65% of TOC removal at pH 7 after 2-hour reaction), the ozone/AC system led not only to higher TOC removal at the same conditions (about 90% in the case of P110 Hydraffin AC) but also to lower ozone consumption. In addition, samples treated with the catalytic process presented ecotoxicity values lower than those resulting from the application of single ozonation.  相似文献   

14.
以酸/碱改性和Cu负载活性炭为催化剂,采用微气泡催化臭氧氧化深度处理化工园区废水。结果表明,经该工艺处理后,出水COD降至20 mg/L以下,发光抑制率降至-1.2%~-7.3%,B/C升至0.29~0.37,消除了废水生物毒性,并提高了废水可生化性。硝酸改性并负载Cu组分活性炭具有更强的催化活性,COD去除率和去除负荷分别可达70.8%和0.478 kg/(m~3·d),臭氧利用率为97.5%,催化臭氧氧化反应效率为0.554 mg COD/mgO_3。  相似文献   

15.
以农业废弃物水稻秸秆为原料制备了秸秆基活性炭负载金属Fe氧化物的臭氧催化剂,主要特征为负载Fe3O4,负载量14.25%,比表面积1175.1 m2·g-1,研究其强化臭氧深度处理造纸废水的效能。结果表明,制备的秸秆基活性炭和催化剂均对造纸废水污染物具有较高的吸附性能,吸附等温线与Langmuir模型拟合相关性良好(R2>0.99);催化剂的使用显著强化了臭氧氧化污染物的性能,最佳的运行参数是臭氧和催化剂投加量分别为0.3g·h-1和1 g·L-1及原水pH,处理后出水COD、BOD5、氨氮和色度分别为46、17、5 mg·L-1和18倍,均低于我国造纸废水污染物排放标准(GB 3544-2008);重复20次的运行,催化剂具有良好的稳定性,金属离子溶出浓度极少,并通过自由基捕获剂和ESR测试探讨该催化臭氧氧化过程属自由基间接氧化为主导的反应机理。本研究制备的臭氧催化剂具有性能高效稳定和经济节约的特点,适用于造纸废水深度处理的工程化应用。  相似文献   

16.
The ozonation of two pharmaceutical compounds: the drug diclofenac (DCF) and the synthetic hormone 17α-ethynylstradiol (EST), has been studied in laboratory prepared water and domestic wastewater in the presence of perovskite catalysts. In ultrapure water, catalysts do not lead to any improvement on the ozonation rates of DCF and EST which supports the fact that both compounds are removed by direct ozonation. TOC removal, on the other hand, is significantly increased in the presence of perovskite catalysts, especially when copper perovskite is used, with TOC removals in the order of 90% after 120 minutes of reaction. In domestic wastewater the results are similar regarding the mechanism of initial pharmaceutical compounds removal, which are due to direct reactions with ozone that, in this case, develop during longer reaction times likely due to the presence of other contaminants. Then, regarding TOC removal in domestic wastewater, negligible differences between non-catalytic and catalytic ozonation are observed during the first approximately 25 minutes of reaction. For higher reaction time, TOC removal is improved only in the case copper perovskite catalyst is used although percentages of TOC removal are comparatively lower than those reached in ultrapure water (they hardly reach 50% TOC removal). Finally, a kinetic study has been carried out and apparent rate constants of the heterogeneous reaction between ozone and TOC on the catalyst surface have been determined.  相似文献   

17.
This study focuses on the catalytic ozonation of organic matter recalcitrant to usual water treatment technologies. Experiments aimed to investigate the efficiency of the process TOCCATA®, which uses a granular catalyst coupled with ozonation. Comparison was made between single ozonation, single adsorption onto the catalyst and catalytic ozonation. Adsorption was proven to contribute to decreased dissolved organic carbon. Catalytic ozonation enhanced organic matter removal and ozone transfer compared to single ozonation. Catalytic ozonation was modeled with global apparent first-order kinetics and single adsorption with pseudo–second-order sorption kinetics.  相似文献   

18.
采用臭氧氧化-A~2/O组合工艺对某企业含吡啶有机废水进行处理。小试试验确定臭氧氧化工艺的最佳反应条件:反应时间为120 min,反应初始pH为5,臭氧投加量为1.20 g/L。此时,废水中吡啶和TOC的去除率分别达到35%和36%,B/C由0.22提高至0.36。经臭氧氧化-A~2/O组合工艺处理后,出水中的吡啶、TOC、COD质量浓度分别稳定在20、90、350 mg/L以下,出水水质达到《污水综合排放标准》(GB 8978—1996)中的三级标准,可以排入该企业所在的化工园区集中污水处理厂进行后续处理。  相似文献   

19.
白小霞  杨庆  丁昀  魏巍  丁洁  钟莺莺 《化工进展》2016,35(1):263-268
介绍了催化臭氧氧化的主要类别,分述了均相与非均相催化臭氧氧化在难降解石化废水方面的已有应用和催化机理,探讨了非均相催化臭氧氧化中活性炭的主要作用;简述了pH值、温度、臭氧和催化剂投加方式与投加量、催化剂体系等因素在非均相催化臭氧氧化中的影响规律。在已有研究的基础上,提出了将催化臭氧氧化与生化处理相结合的建议并佐证了其可行性;预测了催化臭氧氧化未来的研究方向;针对活性炭在催化臭氧氧化处理难降解石化废水中存在的问题,提出应加强对活性炭的改性研究,同时对某些工艺进行深入研究,全面掌握可能存在的问题,为完善催化臭氧氧化的机理作出努力。  相似文献   

20.
以氯化亚铁和氢氧化钠为原料,采用双氧水快速氧化氢氧化亚铁的方式,成功制备了δ-FeOOH纳米材料。首次将其应用于催化臭氧氧化,并探究了催化剂投加量、臭氧浓度、萘普生(NPX)初始浓度对目标污染物降解效果的影响。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、低温N2吸附脱附等温线对催化剂的晶体结构、形貌等进行表征。结果表明,制备的材料纯度高,是厚度约为4 nm的六角片层结构。该材料的BET比表面积达191.73 m2/g,并具有介孔特征。试验制备的材料显著提升了催化臭氧氧化萘普生的能力,反应15 min后TOC的最高去除率为64.5%,与单独臭氧相比提高了38.4%。同时,通过·OH抑制试验,初步探究了可能的纳米δ-FeOOH催化臭氧氧化机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号