首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 590 毫秒
1.
在蓝宝石衬底表面无氮化、低Ⅴ/Ⅲ比的情况下,采用1200℃的衬底温度、5kPa反应室气压,用MOCVD方法在蓝宝石衬底上生长出了表面原子级光滑的AlN外延层.原子力显微镜测试表明其平均粗糙度为0.44nm,X射线衍射(0002)回摆曲线FWHM为166".实验结果和分析表明,极性和气相反应是影响AlN表面形貌的主要原因.以原子级光滑的AlN为模板生长出了高质量的高Al组分的n型AlGaN,证实了AlN模板具有较好的质量.  相似文献   

2.
在蓝宝石衬底表面无氮化、低Ⅴ/Ⅲ比的情况下,采用1200℃的衬底温度、5kPa反应室气压,用MOCVD方法在蓝宝石衬底上生长出了表面原子级光滑的AlN外延层.原子力显微镜测试表明其平均粗糙度为0.44nm,X射线衍射(0002)回摆曲线FWHM为166".实验结果和分析表明,极性和气相反应是影响AlN表面形貌的主要原因.以原子级光滑的AlN为模板生长出了高质量的高Al组分的n型AlGaN,证实了AlN模板具有较好的质量.  相似文献   

3.
文章研究了AlN薄膜的晶体质量、表面形貌、应力等性质与AlN生长工艺的依赖关系。通过对低温成核厚度、成核温度和高温生长AlN所用Ⅴ/Ⅲ比的研究,制备出了具有较好晶体质量的AlN薄膜。高分辨三晶X射线衍射给出AlN薄膜的(002)和(105)的半高宽分别为16.9arcsec和615arcsec,接近国际上报道的较好结果。原子力显微镜对表面形貌的分析表明AlN薄膜的粗糙度为5.7nm。拉曼光谱表明E2(high)模向高能方向移动,说明蓝宝石上外延的AlN薄膜处于压应变状态。光学吸收谱在204nm处具有陡峭的带边吸收,也表明了AlN外乏正薄膜具有辅好妯晶体盾量。  相似文献   

4.
文章研究了AlN薄膜的晶体质量、表面形貌、应力等性质与AlN生长工艺的依赖关系。通过对低温成核厚度、成核温度和高温生长AlN所用Ⅴ/Ⅲ比的研究,制备出了具有较好晶体质量的AlN薄膜。高分辨三晶X射线衍射给出AlN薄膜的(002)和(105)的半高宽分别为16.9arcsec和615arcsec,接近国际上报道的较好结果。原子力显微镜对表面形貌的分析表明AlN薄膜的粗糙度为5.7nm。拉曼光谱表明E2(high)模向高能方向移动,说明蓝宝石上外延的AlN薄膜处于压应变状态。光学吸收谱在204nm处具有陡峭的带边吸收,也表明了AlN外延薄膜具有较好地晶体质量。  相似文献   

5.
在蓝宝石(Al2O3)衬底上应用脉冲激光沉积技术(PLD)生长不同厚度的AlN缓冲层后进行GaN薄膜外延生长。采用高分辨X射线衍射仪(HRXRD)和扫描电子显微镜(SEM)对外延生长所得GaN薄膜的晶体质量和表面形貌进行了表征。测试结果表明:相比直接在Al2O3衬底上生长的GaN薄膜,通过生长AlN缓冲层的GaN薄膜虽然晶体质量较差,但表面较平整;而且随着AlN缓冲层厚度的增加,GaN薄膜的晶体质量和表面平整度均逐渐提高。可见,AlN缓冲层厚度对在Al2O3衬底上外延生长GaN薄膜的晶体质量和表面形貌有着重要的影响。  相似文献   

6.
在蓝宝石(Al2O3)衬底上应用脉冲激光沉积技术(PLD)生长不同厚度的AlN缓冲层后进行GaN薄膜外延生长。采用高分辨X射线衍射仪(HRXRD)和扫描电子显微镜(SEM)对外延生长所得GaN薄膜的晶体质量和表面形貌进行了表征。测试结果表明: 相比直接在Al2O3衬底上生长的GaN薄膜, 通过生长AlN缓冲层的GaN薄膜虽然晶体质量较差, 但表面较平整; 而且随着AlN缓冲层厚度的增加, GaN薄膜的晶体质量和表面平整度均逐渐提高。可见, AlN缓冲层厚度对在Al2O3衬底上外延生长GaN薄膜的晶体质量和表面形貌有着重要的影响。  相似文献   

7.
预辅Al及AlN缓冲层厚度对GaN/Si(111)材料特性的影响   总被引:2,自引:0,他引:2  
主要研究了采用高温AlN缓冲层外延生长GaN/Si(111)材料的工艺技术。利用高分辨X射线双晶衍射(HRXRD)分析研究了GaN/Si(111)样品外延层的应变状态和晶体质量,通过原子力显微镜(AFM)分析研究了不同厚度的高温AlN缓冲层对GaN外延层的表面形貌的影响。实验结果表明,AlN缓冲层生长前预通三甲基铝(TMAl)的时间、AlN缓冲层的厚度对GaN外延层的应变状态、外延层的晶体质量以及表面形貌都有显著影响。得到最优的预辅Al时间为10s,AlN缓冲层的厚度为40nm。在此条件下外延生长的GaN样品(厚度约为1μm)表面形貌较好,X射线衍射(XRD)双晶摇摆曲线半峰全宽(FWHM)(0002)面和(10-12)面分别为452″和722″。  相似文献   

8.
文章研究了AlN薄膜的晶体质量、表面形貌、应力等性质与AlN生长工艺的依赖关系.通过对低温成核厚度、成核温度和高温生长AlN所用Ⅴ/Ⅲ比的研究,制备出了具有较好晶体质量的AlN薄膜.高分辨三晶X射线衍射给出AlN薄膜的(002)和(105)的半高宽分别为16.9arcsec和615arcsec,接近国际上报道的较好结果.原子力显微镜对表面形貌的分析表明AlN薄膜的粗糙度为5.7nm.拉曼光谱表明E2(high)模向高能方向移动,说明蓝宝石上外延的AlN薄膜处于压应变状态.光学吸收谱在204nm处具有陡峭的带边吸收,也表明了AlN外延薄膜具有较好地晶体质量.  相似文献   

9.
在蓝宝石衬底上采用由低温AlN成核层、中温AlN生长层、温度渐变AlN生长层和高温AlN生长层组成的厚三维生长缓冲层来实现AlN外延层位错密度的减少和应力的释放.用光学显微镜、原子力显微镜(AFM)及X射线衍射仪对样品进行了表征,结果表明所生长外延层表面无裂纹,并显示出清晰的阶梯流表面形貌,其平均粗糙度为0.160 nm,KOH腐蚀坑密度为5.8×108 cm-2,(0002)和(10-12)回摆曲线FWHM分别为210”和396”.详细论述了AlN外延层的生长模式、位错行为和应力释放途径.  相似文献   

10.
用金属有机物化学气相沉积(MOCVD)技术,在蓝宝石衬底上生长了Al组分阶变势垒层结构的AlGaN/AlN/GaN高电子迁移率晶体管结构材料.用三晶X射线衍射(TCXRD)和原子力显微镜(AFM)对材料的结构、界面特性和表面形貌进行了研究.测试结果表明该材料具有优良的晶体质量和表面形貌,GaN(0002)衍射蜂的半高宽为4.56',AFM 5μm×5μm扫描面积的表面均方根粗糙度为0.159nm;TCXRD测试中在AlGaN(0002)衍射峰右侧观察到Pendell(o)sung条纹,表明AlGaN势垒层具有良好的晶体质量和高的异质结界面质量.  相似文献   

11.
采用等离子体辅助分子束外延(PA-MBE)研究了Al金属插入层对Si(111)衬底上AlN薄膜材料生长的影响。结果证明,Al插入层可改善AlN外延层的晶体质量,而且引入Al预扩散机制可消除外延表面的孔隙。同时,采用AlN插入层预扩散有利于获得Al极性的AlN,否则倾向于获得N极性的AlN。  相似文献   

12.
采用原子层沉积(ALD)工艺在硅衬底上生长了35 nm以下不同厚度的超薄氮化铝(AlN)晶态薄膜。利用椭圆偏振光谱法在波长275~900 nm内测量并拟合薄膜的厚度及折射率和消光系数等光学参数。利用原子力显微镜(AFM)表征AlN晶粒尺寸随生长循环次数的变化,计算得到薄膜表面粗糙度并用于辅助椭偏模型拟合。针对ALD工艺特点建立合适的椭偏模型,可获得AlN超薄膜的生长速率为0.0535 nm/cycle,AlN超薄膜的折射率随着生长循环次数的增加而增大,并逐渐趋于稳定,薄膜厚度为6.88 nm时,其折射率为1.6535,薄膜厚度为33.01 nm时,其折射率为1.8731。该模型为超薄介质薄膜提供了稳定、可靠的椭圆偏振光谱法表征。  相似文献   

13.
A systematic study is performed to optimize aluminum nitride (AlN) epilayers grown on (0001) sapphire by metal-organic vapor-phase epitaxy. Specifically, the impact of the AlN nucleation conditions on the crystalline quality and surface morphology of AlN epilayers is studied. Atomic force microscopy (AFM) and x-ray diffraction (XRD) results reveal that the nucleation layer plays a critical role in the growth of subsequent layers. The magnitude of the TMAl flow of AlN nucleation layer is found to have a strong effect on the crystalline quality and surface morphology of the high-temperature (HT) AlN epilayer. A simple Al adatom-diffusion-enhancement model is presented to explain the strong dependence of the crystalline quality and surface morphology on TMAl flow. Furthermore, ammonia flow, nucleation temperature, and growth time of the AlN nucleation layer are found to affect the surface morphology and the crystalline quality as well. A trade-off is found between surface morphology and crystalline quality; that is, we do not obtain the best surface morphology and the highest crystalline quality for the same growth parameters. For optimized AlN nucleation layers and HT AlN epilayers, a clear and continuously linear step-flow pattern with saw-tooth shaped terrace edges is found by AFM on AlN epilayers. Triple-axis x-ray rocking curves show a full-width at half-maximum (FWHM) of 11.5 arcsec and 14.5 arcsec for the (002) and (004) reflection, respectively. KOH etching reveals an etch-pit density (EPD) of 2 × 107 cm−2, as deduced from AFM measurements.  相似文献   

14.
We studied the influence of high temperature AlN buffer thickness on the property of GaN film on Si (1 1 1) substrate. Samples were grown by metal organic chemical vapor deposition. Optical microscopy, atomic force microscopy and X-ray diffraction were employed to characterize the samples. The results demonstrated that thickness of high temperature AlN buffer prominently influenced the morphology and the crystal quality of GaN epilayer. The optimized thickness of the AlN buffer is found to be about 150 nm. Under the optimized thickness, the largest crack-free range of GaN film is 10 mm×10 mm and the full width at half maximum of GaN (0 0 0 2) rocking curve peak is 621.7 arcsec. Using high temperature AlN/AlGaN multibuffer combined with AlN/GaN superlattices interlayer we have obtained 2 μm crack-free GaN epilayer on 2 in Si (1 1 1) substrates.  相似文献   

15.
采用金属有机化合物化学气相沉积(MOCVD)方法在2英寸(1英寸=2.54 cm)c面蓝宝石衬底上异质外延厚度1μm、具有原子级平整表面的高质量氮化铝(AlN)外延层.并在此高质量AlN薄膜的基础上开发了基于纳米压印光刻技术、干法刻蚀和湿法腐蚀相结合的工艺,通过自上而下的方法制备得到了大面积范围内规则排列的AlN纳米柱阵列,纳米柱的高度和直径分别为1μm和535 nm.研究结果表明,高晶体质量的AlN材料以及基于AZ400K溶液的湿法腐蚀工艺是制备无腐蚀坑且侧壁光滑的垂直AlN纳米柱阵列的关键.AlN纳米柱阵列的制备为深紫外纳米柱发光器件的研究奠定了基础.  相似文献   

16.
An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) AlN surface has been demonstrated. The effect of slurry pH, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) AlN surface has been compared with that of the(1122) AlGaN surface. The maximum MRR has been found to be ~562 nm/h for the semi-polar(1122) AlN surface, under the experimental conditions of 38 kPa pressure, 90 rpm platen velocity, 30 rpm carrier velocity, slurry pH 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of ~1.2 nm and ~0.7 nm, over a large scanning area of 0.70×0.96 mm2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.  相似文献   

17.
The GaN films are grown by pulsed laser deposition (PLD) on sapphire, AlN(30 nm)/Al2O3 and AlN(150 nm)/Al2O3, respectively. The effect of AlN buffer layer thickness on the properties of GaN films grown by PLD is investigated systematically. The characterizations reveal that as AlN buffer layer thickness increases, the surface root-mean-square (RMS) roughness of GaN film decreases from 11.5 nm to 2.3 nm, while the FWHM value of GaN film rises up from 20.28 arcmin to 84.6 arcmin and then drops to 31.8 arcmin. These results are different from the GaN films deposited by metal organic chemical vapor deposition (MOCVD) with AlN buffer layers, which shows the improvement of crystalline qualities and surface morphologies with the thickening of AlN buffer layer. The mechanism of the effect of AlN buffer layer on the growth of GaN films by PLD is hence proposed.  相似文献   

18.
采用不同厚度AlN作为缓冲层在6H-SiC衬底上生长了GaN外延层,并利用X射线衍射,拉曼散射和透射电子显微镜等对GaN性质进行了研究。AlN缓冲层的应变状态对GaN的晶体质量和表面形貌有很大影响。较厚的AlN缓冲层会导致GaN表面出现裂纹,而太薄的AlN缓冲层会导致GaN层较高的位错密度,从而恶化器件性能。分析了GaN产生裂纹和高位错密度的机制,并采用较优厚度(100nm)的AlN缓冲层生长出高质量的GaN外延层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号