首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
汤华中 《计算数学》2021,43(4):413-425
本文讨论双曲型守恒律方程的熵稳定格式.对于给定的熵对,格式所满足的熵条件中的数值熵通量是不唯一的.Tadmor的充分条件可以唯一地确定标量方程的熵守恒通量,但不能唯一确定方程组的熵守恒通量,却可以给出方程组的空间一阶精度的熵守恒格式.也讨论了在熵守恒通量上添加数值粘性得到的显式熵稳定格式需要满足的条件及常见的时间离散对熵守恒和熵稳定的影响.  相似文献   

2.
本文构造了带三次项的非线性四阶Schodinger方程的一个局部能量守恒格式.证明了该格式是线性稳定的,且能保持离散的整体能量守恒律及离散的电荷守恒律.最后通过数值算例验证了理论结果的正确性.  相似文献   

3.
蔚喜军 《计算数学》2001,23(2):199-208
1.引言 在文章[8]中,利用双曲守恒律的Hamilton-Jacobi方程形式,应用 Galerkin有限元给出了求解一维双曲守恒律的计算方法.不同于间断有限元方法[2]、[3]和 Taylor-Galerkin有限元方法[1]求解双曲守恒律,文章[8]采用连续 Galerkin有限元求解双曲守恒律. 在文章[8]中,对差分方法和有限元方法求解双曲守恒律作了较为详细的讨论.同时在文章[8]中,采用积分变换,将双曲守恒律方程变成 Hamilton-Jacobi方程形式.由于 Hamilton-Jaco…  相似文献   

4.
主要研究了一类带有非负的非线性源的拟线性双曲守恒律方程的Cauchy问题,其中初值为有限Borel测度.克服了初值和非线性项带来的阻碍,得到了局部BV解的存在唯一性.  相似文献   

5.
李大明 《数学年刊A辑》2003,24(3):299-314
本文讨论在无结构网格下用有限体积方法离散二维带非线性源项的单个守恒律,在测度值解与Diperna唯一性结果的框架下,证明了估计解在Lloc1(R2×(0,T))意义下收敛到单个守恒律的熵解.  相似文献   

6.
双曲守恒律方程间断问题的求解是该类方程数值求解问题研究的重点之一.采用PINN (physics-informed neural networks)求解双曲守恒律方程正问题时需要添加扩散项,但扩散项的系数很难确定,需要通过试算方法来得到,造成很大的计算浪费.为了捕捉间断并节约计算成本,对方程进行了扩散正则化处理,将正则化方程纳入损失函数中,使用守恒律方程的精确解或参考解作为训练集,学习出扩散系数,进而预测出不同时刻的解.该算法与PINN求解正问题方法相比,间断解的分辨率得到了提高,且避免了多次试算系数的麻烦.最后,通过一维和二维数值试验验证了算法的可行性,数值结果表明新算法捕捉间断能力更强、无伪振荡和抹平现象的产生,且所学习出的扩散系数为传统数值求解格式构造提供了依据.  相似文献   

7.
一类广义KdV方程的多重守恒格式及其理论分析方法   总被引:1,自引:0,他引:1  
1 引 言 不少描述波动或其它运动现象的非线性方程有多个守恒律,例如Korteweg-deVries(KdV)方程有无限个守恒律。用数值方法求解这些方程时,一个自然的想法是离散模拟这些守恒律,若能同时模拟多个守恒律,那就更吸引人了。对于KdV方程,已有  相似文献   

8.
提出基于Rosenbrock型指数积分的一维间断Galerkin有限元方法.该方法在空间上使用间断有限元方法离散,在时间上采用Rosenbrock型指数积分方法.这样不仅可以保持空间离散上的高精度,而且继承了指数时间积分方法具有显式大步长时间推进的优点.数值试验的结果表明,对于一维双曲守恒律问题,这种方法是一种有效的数值算法.  相似文献   

9.
一类非严格双曲型守恒律整体连续解的存在性   总被引:4,自引:1,他引:3  
该文利用初值扰动法,讨论了一类非严格双曲型守恒律Cauchy问题整体连续解的存在性.这类方程包括了等熵气体动力学方程组.一个典型的变形方程组,弹性力学方程组,二次流守恒律和旋转退化方程等有意义的模型.  相似文献   

10.
本文讨论在无结构网格下用有限体积方法离散二维带非线性源项的单个守恒律,在测度值解与Diperna唯一性结果的框架下,证明了估计解在L_(loc)~l(R~2×(0,T))意义下收敛到单个守恒律的熵解。  相似文献   

11.
Based on kinetic formulation for scalar conservation laws, we present implicit kinetic schemes. For time stepping these schemes require resolution of linear systems of algebraic equations. The scheme is conservative at steady states. We prove that if time marching procedure converges to some steady state solution, then the implicit kinetic scheme converges to some entropy steady state solution. We give sufficient condition of the convergence of time marching procedure. For scalar conservation laws with a stiff source term we construct a stiff numerical scheme with discontinuous artificial viscosity coefficients that ensure the scheme to be equilibrium conserving. We couple the developed implicit approach with the stiff space discretization, thus providing improved stability and equilibrium conservation property in the resulting scheme. Numerical results demonstrate high computational capabilities (stability for large CFL numbers, fast convergence, accuracy) of the developed implicit approach. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 26–43, 2002  相似文献   

12.
In this paper, we design stable and accurate numerical schemes for conservation laws with stiff source terms. A prime example and the main motivation for our study is the reactive Euler equations of gas dynamics. Furthermore, we consider widely studied scalar model equations. We device one-step IMEX (implicit-explicit) schemes for these equations that treats the convection terms explicitly and the source terms implicitly.For the non-linear scalar equation, we use a novel choice of initial data for the resulting Newton solver and obtain correct propagation speeds, even in the difficult case of rarefaction initial data. For the reactive Euler equations, we choose the numerical diffusion suitably in order to obtain correct wave speeds on under-resolved meshes.We prove that our implicit-explicit scheme converges in the scalar case and present a large number of numerical experiments to validate our scheme in both the scalar case as well as the case of reactive Euler equations.Furthermore, we discuss fundamental differences between the reactive Euler equations and the scalar model equation that must be accounted for when designing a scheme.  相似文献   

13.
We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. The convergence of the approximate solution toward a weak solution is established in the cases of first and second order accurate MUSCL relaxed methods.

  相似文献   


14.
In this paper we propose a family of well-balanced semi-implicit numerical schemes for hyperbolic conservation and balance laws. The basic idea of the proposed schemes lies in the combination of the finite volume WENO discretization with Roe’s solver and the strong stability preserving (SSP) time integration methods, which ensure the stability properties of the considered schemes [S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89-112]. While standard WENO schemes typically use explicit time integration methods, in this paper we are combining WENO spatial discretization with optimal SSP singly diagonally implicit (SDIRK) methods developed in [L. Ferracina, M.N. Spijker, Strong stability of singly diagonally implicit Runge-Kutta methods, Appl. Numer. Math. 58 (2008) 1675-1686]. In this way the implicit WENO numerical schemes are obtained. In order to reduce the computational effort, the implicit part of the numerical scheme is linearized in time by taking into account the complete WENO reconstruction procedure. With the proposed linearization the new semi-implicit finite volume WENO schemes are designed.A detailed numerical investigation of the proposed numerical schemes is presented in the paper. More precisely, schemes are tested on one-dimensional linear scalar equation and on non-linear conservation law systems. Furthermore, well-balanced semi-implicit WENO schemes for balance laws with geometrical source terms are defined. Such schemes are then applied to the open channel flow equations. We prove that the defined numerical schemes maintain steady state solution of still water. The application of the new schemes to different open channel flow examples is shown.  相似文献   

15.
We deal in this study with the convergence of a class of numerical schemes for scalar conservation laws including stiff source terms. We suppose that the source term is dissipative but it is not necessarily a Lipschitzian function. The convergence of the approximate solution towards the entropy solution is established for first and second order accurate MUSCL and for splitting semi-implicit methods.

  相似文献   


16.
Total variation diminishing Runge-Kutta schemes   总被引:14,自引:0,他引:14  
In this paper we further explore a class of high order TVD (total variation diminishing) Runge-Kutta time discretization initialized in a paper by Shu and Osher, suitable for solving hyperbolic conservation laws with stable spatial discretizations. We illustrate with numerical examples that non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even for TVD (total variation diminishing) spatial discretization, verifying the claim that TVD Runge-Kutta methods are important for such applications. We then explore the issue of optimal TVD Runge-Kutta methods for second, third and fourth order, and for low storage Runge-Kutta methods.

  相似文献   


17.
The original exponential schemes of the finite volume approach proposed by Spalding [Spalding DB. A novel finite-difference formulation for differential expressions involving both first and second derivatives. Int J Numer Methods Eng 1972;4:509–51] as well as by Raithby and Torrance [Raithby GD, Torrance KE. Upstream-weighted differencing schemes and their application to elliptic problems involving fluid flow. Comput Fluids 1974;2:191–206], on which the well known hybrid and power-law schemes were based, had been derived without considering the non-constant source term which can be linearized as a function of a scalar variable ϕ. Following a similar method to that of Spalding, we derived three modified exponential schemes, corresponding to the average and integrated source terms, with the last scheme involving matching the analytical solutions of the neighbouring sub-regions by assuming the continuity of the first derivative of scalar variable ϕ. To validate the higher accuracy of the modified exponential schemes, as compared to classical schemes, numerical predictions obtained by various discretization schemes were compared with exact analytical solutions for linear problems. For non-linear problems, with non-constant source term, the solutions of the numerical discretization equations were compared with accurate solutions obtained with fine grids. To test the suitability of the proposed schemes in practical problems of computational fluid dynamics, all schemes were also examined by varying the mass flow rate and the coefficient of the non-constant source term. Finally, the best performing scheme is recommended for applications to CFD problems.  相似文献   

18.
The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff (if and only if) the corresponding scheme in variations is stable. A new modification of the central Lax–Friedrichs (LxF) scheme is developed to be of the second-order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second-order nonstaggered central scheme based on operator-splitting techniques.  相似文献   

19.
Bo  Yonghui  Wang  Yushun  Cai  Wenjun 《Numerical Algorithms》2022,90(4):1519-1546

In this paper, we present a novel strategy to systematically construct linearly implicit energy-preserving schemes with arbitrary order of accuracy for Hamiltonian PDEs. Such a novel strategy is based on the newly developed exponential scalar auxiliary variable (ESAV) approach that can remove the bounded-from-below restriction of nonlinear terms in the Hamiltonian functional and provides a totally explicit discretization of the auxiliary variable without computing extra inner products. So it is more effective and applicable than the traditional scalar auxiliary variable (SAV) approach. To achieve arbitrary high-order accuracy and energy preservation, we utilize symplectic Runge-Kutta methods for both solution variables and the auxiliary variable, where the values of the internal stages in nonlinear terms are explicitly derived via an extrapolation from numerical solutions already obtained in the preceding calculation. A prediction-correction strategy is proposed to further improve the accuracy. Fourier pseudo-spectral method is then employed to obtain fully discrete schemes. Compared with the SAV schemes, the solution variables and the auxiliary variable in these ESAV schemes are now decoupled. Moreover, when the linear terms have constant coefficients, the solution variables can be explicitly solved by using the fast Fourier transform. Numerical experiments are carried out for three Hamiltonian PDEs to demonstrate the efficiency and conservation of the ESAV schemes.

  相似文献   

20.
In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, it reveals that multi-symplectic Runge-Kutta methods applied to equations with appropriate boundary conditions can preserve the global norm conservation and the global charge conservation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号