首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
通过电子拉伸、冲击、显微硬度测试及微观组织分析,研究了P92钢焊接接头在不同焊后回火温度下的组织和力学性能。结果表明,760到820℃焊后回火处理,可有效提高P92钢焊缝的冲击韧性,降低焊缝及热影响区的硬度;760、780、800℃回火后,P92钢焊接接头均可获得良好的组织状态和综合力学性能;考虑到P92管道现场施工中的回火处理温度控制误差,选择780℃作为P92管道的回火温度是合适的。  相似文献   

2.
研究了一种单晶高温合金在不同试验温度和加载应力下的持久性能、失效机制和组织演变特征。结果表明:合金标准热处理后获得立方化较好的γ'相组织,在不同试验条件下都具有良好的持久性能。在相同加载应力下,随着试验温度升高,合金的持久寿命降低。760℃/800 MPa条件下的持久断裂为类解理断裂,980℃/250 MPa、1070℃/140 MPa、1100℃/140 MPa和1120℃/140 MPa的持久断裂为韧窝断裂,而850℃/550 MPa下的持久断裂为混合断裂机制。在760℃/800 MPa下持久断裂后,γ'相形状不变,但γ相通道沿垂直应力方向变大,沿平行应力方向变小。其它持久条件下都形成了筏排结构,随着温度的增加其厚度变大。在760℃/800 MPa、850℃/550 MPa和980℃/250 MPa条件下,没有发现析出TCP相,而在1070℃/140 MPa、1100℃/140 MPa和1120℃/140 MPa条件下,有少量针状的TCP相沿一定方向析出,主要含有Re、W、Mo等元素。  相似文献   

3.
以均匀化退火后的G115钢铸件为对象,研究了不同正火+回火工艺处理对其显微组织及力学性能的影响,其中正火工艺分别为1070 ℃×1 h,AC和1100 ℃×1 h,AC,回火工艺分为一次回火(780 ℃×3 h,AC)和两次回火(780 ℃×3 h,AC+750 ℃×3 h,AC)。结果表明:随着正火温度的上升,G115钢铸件的室温强度和650 ℃高温强度均有所上升,而韧性有所下降,塑性无明显变化;随着回火次数的增加,G115钢的室温强度和650 ℃高温强度均有所降低,韧性和塑性无明显影响。正火+回火处理后G115钢铸件中的析出相主要有Laves相、M23C6以及MX(NbC、VN)相,冲击断口形貌呈解理或准解理断裂特征。随着正火温度升高,马氏体板条块(Block)宽度有所增加,排列相对整齐。原奥氏体晶粒尺寸是G115钢室温强度贡献值中晶界强化量的有效晶粒尺寸。推荐的热处理制度为1100 ℃×1 h(AC)正火+780 ℃×3 h(AC) 回火。  相似文献   

4.
采用埋弧自动焊(SAW)对大口径厚壁G115钢管进行焊接,焊后经785℃回火后发现焊缝冲击吸收能量低于标准要求的最低值。通过对焊接方法、焊材及回火温度的分析和试验表明,焊缝的回火温度超出了熔覆金属的Ac1点,产生不完全相变组织,且碳化物回溶、沉淀强化作用减少、马氏体亚结构和位错密度降低、析出相长大粗化等多种因素的交互作用最终造成了焊缝冲击性能的下降。采用1080℃×3 h正火+770℃×6.5 h回火的热处理修复后,焊缝的冲击性能得到大幅度的提升。  相似文献   

5.
基于冷金属过渡加脉冲(CMT + P)的焊接方法,研究了新型回火马氏体耐热钢G115的焊接性以及焊接接头组织和性能. 结果表明,焊接接头经热处理后为回火马氏体组织,焊缝晶粒呈现出等轴晶和柱状晶两种不同的形貌,而焊接热影响区和母材晶粒均为等轴晶. 与焊条电弧焊(SMAW)相比,CMT + P焊接方法有效降低了热输入,大幅度减小了热影响区宽度,提高了焊接接头的拉伸性能和热影响区冲击韧性,焊接接头焊缝冲击韧性略有降低. 焊接接头的室温和高温拉伸断裂机理均为韧性断裂,室温拉伸断口的韧窝内存在一定量的析出相.  相似文献   

6.
采用D132焊条在45钢母材金属上进行焊条电弧堆焊,熔敷金属为两层。为了减小熔敷金属内的焊接残余应力,改善其组织结构和硬度,对试样进行焊后热处理,回火温度分别为400℃、550℃和700℃,保温时间均为2 h。分析焊态及焊后热处理的熔敷金属显微组织和硬度,试验结果表明:焊态时的熔敷金属存在魏氏组织,但随着热处理温度的升高,魏氏组织消失,残余奥氏体的含量却在增多;对比发现,熔敷金属硬度值在回火温度为400℃时最大,在回火温度为700℃时最小,回火温度为550℃时熔敷金属的硬度值处在二者之间,由此可见,随着温度升高熔敷金属硬度值却在下降。  相似文献   

7.
徐玉松  范继  仇潞  许云花 《焊接学报》2017,38(1):125-128
采用镀层铜为中间层,在温度为600,650,700,750和800℃,保温时间45 min,焊接压力15 MPa下对Cu-0.15Zr/GH3030进行真空扩散焊,并对接头组织性能分析.结果表明,温度升高使扩散区变宽,孔隙减少.700℃时,组织以α固溶体、Ni/Al的富铬碳化物相为主,且分布均匀.750℃时,析出强化相增多,但出现孔洞,Cu-0.15Zr软化严重,接头变形量大.温度过低或过高,拉伸试样均在Cu-0.15Zr侧断裂.断口韧窝为非等轴状,Cu-0.15Zr侧现蛇形滑移线,两侧韧窝底部均有第二相,断裂类型为沿晶韧性断裂.综合焊合率、变形量、力学性能得保温时间45 min,焊接压力15 MPa,焊接温度700℃为最佳参数.  相似文献   

8.
利用等离子活化技术对93W/Ni/Mo1进行真空扩散焊接,用剪切强度和显微硬度表征焊接接头的力学性能,对焊接界面和接头断口物相及微观结构进行表征分析。结果表明,焊接温度低于800℃时,焊接界面有孔洞,焊接温度高于800℃时,焊接界面良好。焊接接头的剪切强度随着焊接温度的升高先升高后降低,在焊接温度为800℃时接头强度最大为100.2 MPa。焊接温度低于800℃时,焊接界面发生扩散形成固溶体;焊接温度高于800℃时,Ni/Mo1界面生成MoNi高硬度金属间化合物,降低焊接接头结合强度。93W/Ni/Mo1焊接接头的断裂破坏主要发生在Ni/Mo1扩散界面。  相似文献   

9.
对用于轧辊堆焊的药芯埋弧焊丝W110熔敷金属进行了焊接热模拟研究。通过焊接热模拟试验、硬度测试、微观分析等手段对W110焊丝熔敷金属在七种焊接热循环条件下得到的组织和性能进行了研究。研究表明,该焊丝熔敷金属的Ms点在260~280℃;用W110焊接时的预热温度可选用280~300℃,层间温度应不低于260℃,回火温度应避开450~550℃。  相似文献   

10.
采用四种不同V含量焊丝对高强钢板进行钨极氩弧焊试验,焊后对熔敷金属进行640 ℃保温2 h的回火处理. 研究了V含量和回火处理对熔敷金属微观组织及力学性能的影响. 结果表明,焊态及焊后回火态条件下,随着V含量的增加,熔敷金属强度升高,延伸率和冲击功降低,经回火处理后,不含V熔敷金属内晶界处析出M2C碳化物,而含V熔敷金属内析出弥散分布的VC析出相,焊后回火过程中位错回复引起基体软化的作用高于M2C及VC的析出强化作用,导致回火后强度降低,断后伸长率冲击吸收能量升高. 细小VC具有阻碍位错运动的作用,导致回火后含V熔敷金属仍保留较高的位错密度. 实际应用中应根据熔敷金属性能要求合理选择V含量及焊后回火工艺.  相似文献   

11.
以真空感应熔炼(VIM)+电渣重熔精炼(ESR)生产的CLAM钢为研究对象,在1000℃淬火后,分别在690、725、760、795℃下回火,采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射仪(XRD)等研究了回火温度对CLAM钢组织及力学性能的影响。结果表明:在不同温度回火后,试验钢显微组织均为回火马氏体;随着回火温度的升高,试验钢中析出相数量逐渐增多;725℃回火后,试验钢析出相的尺寸细小,但出现偏聚现象,回火温度为760℃时,析出相分布较为均匀;随着回火温度的升高,试验钢强度逐渐降低,冲击韧性逐渐提高;760℃回火时试验钢具有较优的综合力学性能。725℃回火对试验钢的位错密度和强度影响最大,相比690℃回火,试验钢的位错密度、抗拉强度及屈服强度分别下降了2.575×10^14 m^-2、109.6 MPa和118.1 MPa。  相似文献   

12.
T91钢的回火工艺分析及其组织评定   总被引:1,自引:0,他引:1  
通过不同正火和回火处理获得不同状态的T91钢试样。采用金相、扫描电镜,硬度测试等方法,研究了不同回火条件下T91钢的组织演化过程与硬度变化规律。结果表明,随正火温度升高,T91钢中合金元素逐渐固溶,板条马氏体逐渐粗化,残留奥氏体减少,1050℃正火后获得最佳细小马氏体组织。670~820℃回火时,T91钢的再结晶点(790℃)和相变点(820℃)很近,随着回火温度的升高,正火板条马氏体开始发生回复和再结晶,带来硬度的逐渐降低,其中790℃回火时硬度最低。T91钢交货态采用760~780℃的回火工艺处理,保证了板条马氏体只发生高温回复,没有发生再结晶,所以从转变过程和组织形态看,称T91钢交货态的组织为回火马氏体更合理。  相似文献   

13.
采用正交试验法,分析了正火温度、正火时间、回火温度、回火时间热处理参数对G115钢性能的影响,并通过热压三通热模拟,研究G115钢大口径管件的热处理工艺。结果表明,回火温度对G115钢强度、硬度和冲击性能的综合影响最大。回火温度为780 ℃时,强度和硬度保持在较高的水平,冲击性能较优。G115钢大口径管件的热处理推荐工艺为正火温度1070~1090 ℃,保温时间1~2 min/mm且不小于1.5 h;回火温度770~790 ℃,保温时间3.5~5 min/mm且不小于4 h。试制G115钢大口径管件经推荐工艺处理后,性能均符合T/CSTM 00017—2017标准要求。  相似文献   

14.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。  相似文献   

15.
李伟  宋欣  欧阳宇  李新宇  马鑫  许继勇 《轧钢》2022,39(2):30-36
针对当前锯片用钢油淬工艺污染空气、成本较高等缺点,开发了其水淬工艺。以实际工业生产的15.3 mm厚45Mn2V锯片用钢板为研究对象,结合热模拟试验,对试验钢相变过程进行了研究。同时,结合实验室模拟和工业水淬试验,并与工业油淬进行对比,研究了45Mn2V钢板水淬条件下组织和性能变化。结果表明:采用w(C)=0.43%~0.46%、w(Mn)=1.45%~1.60%、w(V)=0.040%~0.055% 的化学成分设计,热模拟条件下45Mn2V Ac1=728 ℃、Ac3=774 ℃、Ar3=685 ℃、Ar1=633 ℃,Ms=272 ℃。当冷速不大于3 ℃/s时,试验钢板组织类型为先析铁素体+珠光体;随着冷速的增加,先析铁素体含量减少,珠光体片层间距逐渐变小,向索氏体及屈氏体组织转变;冷速不小于30 ℃/s时,基本得到全马氏体组织。随水淬温度由770 ℃提升至850 ℃,钢板硬度由55.4HRC增加至63.8HRC;回火后钢板硬度变化趋势与淬火态类似,硬度为25.4HRC~-29.3HRC;不同淬火温度下,钢板20 ℃冲击功均在30 J以下;随着淬火温度的升高,钢板冲击韧性逐渐降低;不同温度淬火并经580 ℃回火后,钢板冲击韧性大幅提高。工业生产表明:采用820 ℃水淬+580 ℃回火工艺与850 ℃油淬+550 ℃回火处理的钢板,组织均为回火索氏体,但前者残余奥氏体含量略微增加;力学性能方面,前者强度和硬度略微降低,但冲击韧性更加优异。  相似文献   

16.
对800 MPa级在线淬火(DQ)水电钢回火工艺进行试验研究,分析了3种不同回火温度对试验钢组织和性能的影响。结果表明,控轧后770~820 ℃快速水冷淬火后,在620~680 ℃之间回火,随着回火温度的升高,钢的屈服强度、抗拉强度下降,伸长率和冲击吸收能量提高。650 ℃回火处理可使试验钢达到最佳的强度和韧性匹配。试验钢在620~680 ℃回火后的组织为回火贝氏体,随回火温度的升高,组织中的碳化物逐渐长大并呈现粒状分布,贝氏体组织呈现多边形化特征。  相似文献   

17.
利用场发射扫描电镜、透射电镜以及电化学综合测试系统对15Cr超级马氏体不锈钢(SMSS)经不同热处理工艺处理后的显微组织变化和第二相碳化物及其对该钢腐蚀行为的影响进行了研究。结果表明,试验钢经不同热处理工艺处理后组织均由板条马氏体、奥氏体以及M23C6型碳化物颗粒组成,随着回火温度的增加,试验钢中逆变奥氏体含量增加,且在650 ℃回火时达到体积分数最大值41.41%。当回火温度高于600 ℃时第二相碳化物开始析出,且650 ℃回火后碳化物数量及尺寸较600 ℃增多。点蚀电位随着回火温度的增加而降低,第二相碳化物的析出降低了试验钢的点蚀电位,促进了亚稳点蚀位置的形成,从而降低了试验钢的耐腐蚀性能。  相似文献   

18.
李灿明 《金属热处理》2021,46(7):182-186
采用中低碳微量添加Nb、V、Cr、Mo、Cu、Ni等合金元素成分设计思路,通过对Q960E钢板相变点、静态CCT曲线测定,详细研究钢板淬火后经不同回火工艺的微观组织和力学性能。结果表明:当冷速为0.1~1 ℃/s时,组织主要为铁素体+粒状贝氏体,随冷却速度增加,铁素体转变受到抑制,逐渐向贝氏体和马氏体转变,当冷速大于10 ℃/s时,组织全部为马氏体。淬火钢板经150、180、210 ℃回火后,随回火温度升高,强度不断下降,塑性增加,韧性呈先升后降,180 ℃回火时综合性能最佳匹配,屈服强度1050 MPa、抗拉强度1140 MPa、断后伸长率11.0%、-40 ℃KV2单值60 J以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号