首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A Mobicast Routing Protocol in Vehicular Ad-Hoc Networks   总被引:1,自引:0,他引:1  
In this paper, we present a “spatiotemporal multicast”, called a “mobicast”, protocol for supporting applications which require spatiotemporal coordination in vehicular ad hoc networks (VANETs). The spatiotemporal character of a mobicast is to forward a mobicast message to vehicles located in some geographic zone at time t, where the geographic zone is denoted as zone of relevance (ZOR). Vehicles located in ZOR at the time t must keep the connectivity to maintain the real-time data communication between all vehicles in ZOR. The connectivity is kept of all vehicles in ZOR through the vehicular ad hoc networks (VANETs). The connectivity of ZOR is lost if any vehicle in ZOR suddenly accelerates or decelerates its velocity. The temporal network fragmentation problem is occurred such that vehicle in ZOR cannot successfully receive the mobicast messages. To solve the problem, a new mobicast protocol is presented in this work to successfully disseminate mobicast messages to all vehicles in ZOR via a special geographic zone, called as zone of forwarding (ZOF). The main contribution of this work is to develop a new mobicast routing protocol to dynamically estimate the accurate ZOF to successfully disseminate mobicast messages to all vehicles in ZOR. To illustrate the performance achievement, simulation results are examined in terms of dissemination successful rate, packet overhead multiplication, packet delivery delay, and throughput.  相似文献   

2.
Safety message dissemination is crucial in vehicular ad hoc networks (VANETs) for road safety applications. Vehicles regularly transmit safety messages to surrounding vehicles to prevent road accidents. However, changing vehicle mobility and density can cause unstable network conditions in VANETs, making it inappropriate to use a fixed contention window (CW) for different network densities. It has been proposed a 1-D Markov model under unsaturation conditions to analyze the performance of the system with varying CWs under changing vehicle densities. Additionally, it introduces the use of cooperative communication (CoC) to relay failed safety messages. In CoC, two control packets, namely, negative acknowledge (NACK) and enable to cooperate (ETC), are utilized. The proposed analytical model named cooperative communication for safety message dissemination (CoC-SMD) is used to calculate throughput and average packet delay for varying CW and different packet size. The simulation confirms the validity of the analytical results and show significant improvement in the metrics through the use of varying CW sizes and CoC compared with existing techniques.  相似文献   

3.
Vehicular ad hoc networks (VANETs) evolved by adopting the principles of mobile ad hoc networks. This network has been designed to deploy safety related application in vehicular node in the less chaotic environment in road scenarios. Vehicles exchange emergency messages through direct communication. In a practical situation, a direct communication between the vehicles is not possible, and it is prohibited by either static or dynamic obstacles. These obstacles prevent the direct communication between the vehicles and can craft a situation like non‐line of sight (NLOS). This NLOS becomes a perennial problem to the researchers as it creates localization and integrity issues which are considered to be important for road safety applications. Handling the moving obstacles is found to be a challenging one in the VANET environment as obstacles like truck are found to have similar characteristics of the vehicular nodes. This paper utilizes the merits of the meta‐heuristic approach and makes use of the improved gray wolf optimization algorithm for improving the localization and integrity services of the VANET by overcoming the NLOS conditions. The proposed methodology is found to have improved neighborhood awareness, reduced latency, improved emergency message delivery rate, and reduced mean square error rate.  相似文献   

4.
Reliability and timeliness are two critical requirements of vehicle safety‐related communication services in VANETs. In this paper, we develop an analytical model to analyze the packet reception rate and end‐to‐end delay of emergency message delivery operation in a VANET environment when multihop broadcast communications are used. The model is applied to derive closed‐form expressions of the end‐to‐end delay of two popular multihop message propagation methods, that is, the farthest‐distance method and the counter‐based method. Extensive simulations are conducted to validate the correctness of the theoretic results and compare the performance of the two message propagation methods. Observations are provided for the design of efficient and robust emergency message propagation methods for vehicular wireless communication networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Li  Zhiyuan  Song  Yue  Bi  Junlei 《Wireless Networks》2019,25(1):379-398

The recent development of the vehicular ad hoc networks (VANETs) has motivated an increasing interest in vehicular services and applications, such as active safety service and the infotainment service. Effective data Dissemination has become more and more important in vehicular services sharing. In this paper, the connectivity characteristics of VANETs are theoretically analyzed and implemented to show the partial connections in vehicle to vehicle communication. Hence, we propose the connectivity-aware data dissemination (CADD) in partially connected VANETs will improve the data transmission capacity. In the CADD protocol, a new metric of the node forwarding capability estimation is introduced. The metric is designed by the combination the throughput function and the active connection time estimation. And then, the high efficiency data dissemination protocol is designed by the new metric. Simulation results show that the CADD protocol outperforms existing solutions in terms of the packet delivery ratio, the transmission delay, and the protocol overhead under the condition of the intermittent network connectivity.

  相似文献   

6.
In vehicular ad hoc networks, vehicles may use a routing protocol to inform emergent events, for example, car accidents or traffic jams. Hence, many of the researchers are focused on minimizing the end‐to‐end delay of the routing protocol. However, some applications, for example, email or ftp, are not time critical, and radio spectrum is a limited resource. Hence, delay‐bounded routing protocol, whose goal is to deliver messages to the destination within user‐defined delay and minimize the usage of radio, has become an important issue. The delay‐bounded routing protocols deliver message to the destination by the hybrid of data muling (carried by the vehicle) and forwarding (transmitted through radio). When the available time is enough, the message will be delivered by muling; otherwise, it will be delivered by forwarding. However, in an urban area, there are many traffic lights, which may greatly affect the performance of the delay‐bounded routing protocols. Existing works do not consider the effect of traffic lights, and hence, it may adopt an improper delivery strategy and thus wastes much available time. To improve previous works, we propose a novel delay‐bounded routing protocol, which has considered the effect of traffic lights. Whenever a vehicle passes an intersection, it will gather the information of the traffic light and traffic load of the next road section, and thus, it can make a more accurate prediction and adopt a more proper strategy to deliver message. Simulation results show that the proposed protocol can make a better usage of the available time and uses less radio resource to deliver the message in time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
To improve traffic safety and efficiency, it is vital to reliably send traffic-related messages to vehicles in the targeted region in vehicular ad hoc networks (VANETs). In this paper, we propose a novel scheme, relative position based message dissemination (RPB-MD), to reliably and efficiently disseminate messages to the vehicles in the zone-of-relevance. Firstly, the relative position based (RPB) addressing model is proposed to effectively define the intended receivers in the zone-of-relevance. To ensure high message delivery ratio and low delivery delay, directional greedy broadcast routing (DGBR) is introduced to make a group of candidate nodes hold the message for high reliability. Moreover, to guarantee efficiency, the protocol time parameters are designed adaptively according to the message attributes and local vehicular traffic density. The protocol feasibility is analyzed to illustrate the robustness and reliability of RPB-MD. Simulation results show that RPB-MD, compared with representative existing schemes, achieves high delivery ratio, limited overhead, reasonable delay and high network reachability under different vehicular traffic density and data sending rate.  相似文献   

8.
Recent advances in intelligent transportation systems enable a broad range of potential applications that significantly improve the vehicle and road safety and facilitate the efficient dissemination of information among the vehicles. To assist the vehicle traffic, message broadcasting is a widely adopted technique for road safety. But efficient message broadcasting is a significant issue, especially in a high network density due to the broadcast storm problem. To solve this issue, several methods are proposed to eliminate the redundant transmission of safety packets. However, they lack in restricting the broadcasting region of safety messages, and the transmissions of safety packets outside the dangerous region, and force the vehicles to unnecessary detours. This paper proposes an adaptive multimode routing protocol, network condition, and application‐based data adaptive intelligent message routing in vehicular network (NetCLEVER) that supports 2 modes of operation such as message broadcasting and intelligent routing. In message broadcasting mode, the NetCLEVER decides the dangerous region of the network by considering the changes of neighbor vehicles velocity, instead of current vehicle velocity, because a vehicle decision in velocity is interdependent with the preceding vehicles. In intelligent routing mode, the NetCLEVER exploits the cuckoo search optimization in routing by taking into account multiple routing factors such as the road topology of intersections and traffic signals and their impact on link stability, which improves the reliability of routing packets significantly. The performance evaluation illustrates that the proposed NetCLEVER improves reliable wireless communication as well as road safety in vehicular ad hoc networks.  相似文献   

9.
Vehicular Ad Hoc Network (VANET) has been a hot topic in the past few years. Compared with vehicular networks where vehicles are densely distributed, sparse VANET have more realistic significance. The first challenge of a sparse VANET system is that the network suffers from frequent disconnections. The second challenge is to adapt the transmission route to the dynamic mobility pattern of the vehicles. Also, some infrastructural requirements are hard to meet when deploying a VANET widely. Facing these challenges, we devise an infrastructure‐less unmanned aerial vehicle (UAV) assisted VANET system called V ehicle‐D rone hybrid vehicular ad hoc Net work (VDNet), which utilizes UAVs, particularly quadrotor drones, to boost vehicle‐to‐vehicle data message transmission under instructions conducted by our distributed vehicle location prediction algorithm. VDNet takes the geographic information into consideration. Vehicles in VDNet observe the location information of other vehicles to construct a transmission route and predict the location of a destination vehicle. Some vehicles in VDNet equips an on‐board UAV, which can deliver data message directly to destination, relay messages in a multi‐hop route, and collect location information while flying above the traffic. The performance evaluation shows that VDNet achieves high efficiency and low end‐to‐end delay with controlled communication overhead. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Data dissemination in vehicular ad hoc network (VANET) is emerging as a critical area of research. One of the challenges posed by this domain is the reliability of connection, which depends on many parameters, such as the bandwidth consumption, transmission delay, and data quality of service (QoS). Dissemination of emergency messages is very critical since the network topology is changing frequently and rapidly, which leads to data loss. So, it is necessary to develop new protocols and enhance dissemination schemes in VANET to avoid more emergencies and hazards cases. In this regard, we have proposed a new strategy, which consists of data handling before dissemination process as the first step of our scheme. In this phase, the original message is optimized in order to reduce the number of exchanged packets. The second part of this proposition consists of constructing fast and stable clusters to improve the message delivery time and to procure efficient bandwidth consumption. This approach is based on a Fitness function, which takes into account different parameters such as the transmission period, the connectivity degree, the relative velocity, and the link lifetime validity. Since exchanging data in VANET is an important process, routing phase is proposed to perform data exchange among clusters. It is based on a rapid and real‐time heuristic (real‐time adaptive A* [RTAA*]). To evaluate the reliability of the proposed approach, an urban scenario is used with different simulation parameters. The simulation results show that our proposed approach presents a better stability and efficiency performance compared with the discussed approaches. The proposed approach improves the performance of cluster duration (5% ? 25%), delivery rate (2% ? 8%), and the overhead (5% ? 35%) on average compared with the discussed approaches.  相似文献   

11.
Routing in cooperative vehicular networks is a challenging task because of high mobility of vehicles and difficulty of localization. In this paper, we study the geocast routing problem in Vehicular Ad‐hoc NETworks (VANETs), which aims at delivering data to a specific group of mobile vehicles identified by their geographical location. Although many geocast routing protocols have been proposed, only partial inherent constraints of VANETs (such as mobility, internal network fragmentation problem, external network fragmentation problem, and overload) are taken into account. Therefore, we propose two novel and robust geocast routing protocols: the first one, called Robust Geocast Routing Protocol for Safety Applications (RGRP‐SA), is dedicated to road safety applications, while the second, namely, Robust Geocast Routing Protocol for Comfort Applications (RGRP‐CA), is designed for comfort applications. Simulations conducted in NS‐2 demonstrate that our safety‐oriented RGRP‐SA protocol outperforms Inter‐Vehicle Geocast protocol and Mobicast Routing Protocol in VANETs by sending up to 25% more packets, cutting the end‐to‐end delay in half, and solving the internal network fragmentation problem. Besides, it is also shown that our comfort‐oriented RGRP‐CA protocol serves well comfort applications with only light overhead by solving internal and external network fragmentation problems and providing more reliable data delivery (with a 25% higher packet delivery ratio) and higher network throughput utilization in comparison with Mobicast with Carry‐and‐Forward protocol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In urban vehicular wireless environments, several vehicles can send warning messages and so every vehicle within the transmission range will receive the broadcast transmission, possibly rebroadcasting these messages to other vehicles. This increases the number of vehicles receiving the traffic warning messages. Hence, redundancy, contention, and packet collisions due to simultaneous forwarding (usually known as the broadcast storm problem), can occur. In the past, several approaches have been proposed to solve the broadcast storm problem in wireless networks such as Mobile ad hoc Networks MANETs. In this paper, we present Street Broadcast Reduction SBR, a novel scheme that mitigates the broadcast storm problem in VANETs. SBR also reduces the warning message notification time and increases the number of vehicles that are informed about the alert.  相似文献   

13.
Routing protocols for vehicular ad hoc networks (VANETs) have attracted a lot of attention recently. Most of the researches emphasize on minimizing the end‐to‐end delay without paying attention to reducing the usage of radio. This paper focuses on delay‐bounded routing, whose goal is to deliver messages to the destination within user‐defined delay and to minimize the usage of radio because radio spectrum is a limited resource. The messages can be delivered to the destination by the hybrid of data muling (carried by the vehicle) and forwarding (transmitted through radio). In the existing protocol, a vehicle may only switch the delivery strategy (muling or forwarding) at an intersection according to the available time of the next road segment, which is between the current intersection and the next intersection. To improve previous works, our protocol uses linear regression to predict the available time and the traveling distance, and thus, the vehicle can switch to a proper delivery strategy at a proper moment and can reduce the number of relays by radio. Our protocol contains two schemes: the greedy and centralized schemes. The greedy scheme uses only the current sampling data to predict the available time and decide when to switch the delivery strategy, whereas the centralized scheme uses the global statistical information to choose a minimum‐cost path. Simulation results justify the efficiency of the proposed protocol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Efficient message dissemination in vehicular ad-hoc networks (VANETs) is crucial for supporting communication among vehicles and also between users and the Internet, with minimal delay and overhead but maximum reachability. To improve the message dissemination in these networks, we show the need to study the graph-theoretic properties of VANETs, since they neither follow the small-world nor the scale-free network characteristics often found in large self-organized networks. We consider three fundamental properties: connectivity, node degree, and clustering coefficient. For each property, we develop and validate analytical models for both the urban and highway scenarios, building an extensive graph structure perspective on VANETs. With this, we see how connectivity changes with network density, that VANETs exhibit truncated Gaussian node degree distributions, and that network clustering coefficients do not depend on the network’s size or density. We then show how these results can be used to generate individual behavior favorable to the whole network using local information. The usefulness of this new approach is demonstrated by proposing new mechanisms to enhance the urban vehicular broadcasting protocol UV-CAST. Our results show that these new mechanisms lead to excellent performance while reducing the overhead in the UV-CAST protocol.  相似文献   

15.
Vehicular Ad Hoc Networks (VANETs), designed to ensure the safety and comfort of passengers via the exchange of information amongst nearby vehicles or between the vehicles and Roadside Units (RSUs), have attracted particular attention. However, the success of many VANET applications depends on their ability to estimate the vehicle position with a high degree of precision, and thus, many vehicle localization schemes have been proposed. Many of these schemes are based on vehicle‐mounted Global Positioning System (GPS) receivers. However, the GPS signals are easily disturbed or obstructed. Although this problem can be resolved by vehicle‐to‐vehicle communication schemes, such schemes are effective only in VANETs with a high traffic density. Accordingly, this paper presents a VANET localization scheme in which each vehicle estimates its location on the basis of beacon messages broadcast periodically by pairs of RSUs deployed on either side of the road. In addition, three enhancements to the proposed scheme are presented for the RSU deployment, RSU beacon collisions, and RSU failures. Overall, the ns‐2 simulation results show that the localization scheme achieves a lower localization error than existing solutions on the basis of vehicle‐to‐vehicle communications and is robust toward changes in the traffic density and the vehicle speed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
High mobility of nodes in vehicular ad hoc networks (VANETs) may lead to frequent breakdowns of established routes in conventional routing algorithms commonly used in mobile ad hoc networks. To satisfy the high reliability and low delivery‐latency requirements for safety applications in VANETs, broadcasting becomes an essential operation for route establishment and repair. However, high node mobility causes constantly changing traffic and topology, which creates great challenges for broadcasting. Therefore, there is much interest in better understanding the properties of broadcasting in VANETs. In this paper we perform stochastic analysis of broadcasting delays in VANETs under three typical scenarios: freeway, sparse traffic and dense traffic, and utilize them to analyze the broadcasting delays in these scenarios. In the freeway scenario, the analytical equation of the expected delay in one connected group is given based on statistical analysis of real traffic data collected on freeways. In the sparse traffic scenario, the broadcasting delay in an n‐vehicle network is calculated by a finite Markov chain. In the dense traffic scenario, the collision problem is analyzed by different radio propagation models. The correctness of these theoretical analyses is confirmed by simulations. These results are useful to provide theoretical insights into the broadcasting delays in VANETs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Vehicular ad hoc networks (VANETs) are expected in improving road safety and traffic conditions, in which security is essential. In VANETs, the authentication of the vehicular access control is a crucial security service for both inter‐vehicle and vehicle–roadside unit communications. Meanwhile, vehicles also have to be prevented from the misuse of the private information and the attacks on their privacy. There is a number of research work focusing on providing the anonymous authentication with preserved privacy in VANETs. In this paper, we specifically provide a survey on the privacy‐preserving authentication (PPA) schemes proposed for VANETs. We investigate and categorize the existing PPA schemes by their key cryptographies for authentication and the mechanisms for privacy preservation. We also provide a comparative study/summary of the advantages and disadvantages of the existing PPA schemes. Lastly, the open issues and future objectives are identified for PPA in VANETs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Nowadays, most of the applications proposed for Vehicular Ad Hoc Networks (VANETs) rely on geocasting, i.e. on the possibility to identify the end-points of the communication through their geographic coordinates instead of their network addresses. At the same time, each vehicular application has its own set of Quality-of-Service (QoS) requirements which must be guaranteed by the underlying dissemination protocol. This has lead to a proliferation of geocast protocols proposed in the literature of VANETs, usually based on reactive or proactive approaches. However, most of these solutions are tailored for a specific application (e.g. active-safety applications), and thus might not be suitable for generic deployments of VANETs. In this paper, we propose a Dynamic Backbone Assisted (DBA) MAC protocol as a general solution to support geocast communication on highway scenarios for different classes of vehicular applications. DBA-MAC combines the benefits of proactive and reactive schemes through a cross-layer architecture which includes: (i) a novel distributed clustering algorithm and (ii) a fast information dissemination mechanism. First, DBA-MAC creates and maintains a virtual backbone of vehicles inside the highway scenario. Then, it provides fast dissemination of geocast messages through a combination of contention-free and contention-based forwarding mechanisms at the link layer. We provide a complete and exhaustive evaluation of the DBA-MAC scheme under different application requirements and network load conditions. We propose three metrics for the selection of backbone members which provide different characteristics in terms of delivery delay and ratio, and we analyze their performance with both analytical models and simulation studies. Then, we evaluate the performance of DBA-MAC compared to traditional geocast schemes for three classes of vehicular applications: active-safety applications, traffic-information applications, multimedia streaming (audio/video) applications. The simulation results confirm that DBA-MAC is able to greatly reduce the delivery delay for active-safety applications, and to adequately meet the requirements of multimedia applications for VANETs.  相似文献   

19.
Vehicular ad‐hoc networks (VANETs) play a vital role in today's context of vehicular traffic. In this paper, clusters of vehicles are created on the basis of average speed of the vehicles. One cluster communicates with the next cluster through a cluster head and also share the same information with next cluster heads and installed road side units (RSUs). By using this technique, we can solve the problem of rough driving behavior and road terrorism which is due to speed variation of vehicles and fake information dissemination by the drivers. Many a times, drivers may spread fake accident‐related information into the network which is a serious cause of concern in VANETs. It is ensured that such drivers are not allowed to spread wrong information in the network to avoid accidents. To solve this problem, we developed performance enhancement of traffic information gathering (PEnTInG) algorithm that selects only those drivers/vehicles as cluster heads in a cluster who has maximum value of the cluster head factor (CHF). The CHF is derived by considering different weights in range of 0 to 1 of relative average speed, time to leave, trust factor, and neighborhood degree. Further, the elected cluster head shares and stores the same information with the RSUs. In case, a driver wants to disseminate fake or wrong information in a network, then that vehicle driver can be easily tracked by the local authority by accessing RSU data. Simulation results show that the stability of PEnTInG is increased by 25% against the existing schemes viz. lowest‐ID, MCMF, and cluster‐based technique.  相似文献   

20.
Vehicular ad hoc networks are emerging as a promising approach to improve traffic safety and provide a wide range of wireless applications to drivers and passengers on the road. In order to perform reliable and trusted vehicular communications, one requirement is to ensure peer vehicle credibility by means of validating digital certificate attached to messages that are transmitted by other vehicles. However, in vehicular communication systems, certificate validation is more time consuming than in traditional networks because each vehicle receives a large number of messages in a short period. Another concern is the unsuccessful delivery of information between vehicles and other entities on the road due to their high mobility rate. For these reasons, we seek new solutions that will aid in speeding up the process of certificate validation. In this article, we propose a certificate revocation status validation scheme using the concept of clustering from data mining that can meet the aforementioned requirements. We employ the technique of k‐Means clustering to boost the efficiency of certificate validation, thereby enhancing the security of a vehicular ad hoc network. Additionally, a comprehensive security analysis for this scheme is presented; the analysis shows that this scheme can effectively improve the validation of certificates and thus increase the communication security in vehicular ad hoc networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号