首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
Most studies that have investigated the anabolic effects of parathyroid hormone (1-84) (PTH) or PTH fragments on the skeleton of ovariectomized (OVX) rats have evaluated the short-term effects of high-dose PTH(1-34) in young animals. This study used densitometry, histomorphometry, and biomechanical testing to evaluate the effects of 12-month daily treatment with low-dose PTH (15 or 30 μg/kg) in rats that were 10 months old at baseline, 4 months after OVX. Bone mineral density (BMD) and bone strength were reduced substantially in control OVX rats. The 15 μg/kg dose of PTH restored BMD to levels similar to those in sham animals within 6 months at the lumbar spine, distal and central femur, and whole body and maintained the BMD gain from 6 to 12 months. The 30 μg/kg dose produced greater effects. Both PTH doses normalized the trabecular bone volume-to-total volume ratio (BV/TV) at lumbar vertebra 3 but not at the proximal tibia (where baseline BV/TV was very low), solely by increasing trabecular thickness. PTH dose-dependently increased bone formation by increasing the mineralizing surface, but only the 30 μg/kg dose increased resorption. PTH increased cortical BMD, area, and thickness, primarily by increasing endocortical bone formation, and restored all measures of bone strength to levels similar to those in sham animals at all skeletal sites. PTH increased bone mass safely; there was no osteoid accumulation, mineralization defect, or marrow fibrosis and there were no abnormal cells. Thus, long-term PTH therapy normalized bone strength in the aged OVX rat, a model of postmenopausal osteoporosis, through increased bone turnover and enhanced formation of both trabecular and cortical bone.  相似文献   

2.
Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. INTRODUCTION: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. MATERIALS AND METHODS: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 microg/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. RESULTS: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 microg/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3-7 months with 10 and 25 microg/kg and by 16 months with 5 microg/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 microg/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. CONCLUSIONS: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 microg/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling.  相似文献   

3.
Miller MA  Bare SP  Recker RR  Smith SY  Fox J 《BONE》2008,42(6):1175-1183
Daily treatment of ovariectomized (OVX) adult rhesus monkeys with human parathyroid hormone (PTH) 1-84 for 16 months increases trabecular bone volume (BV/TV), number (Tb.N) and connectivity at lumbar vertebra-3 (L3) and thoracic vertebra-10. We proposed that the increased Tb.N and connectivity was achieved by stimulation of intratrabecular tunneling. Using histomorphometry to determine frequency of events, we have now quantified intratrabecular tunneling at L3 and extended it to investigate the effects of PTH(1-84) treatment on trabecular bone at the proximal femur, distal radius and iliac crest of these animals. At L3, tunneling frequency was low in control sham and OVX animals ( approximately 0.05/mm(2)) but increased significantly in PTH(1-84)-treated animals (0.27, 0.49 and 0.95/mm(2) with the 5, 10 and 25 microg/kg doses, respectively). Very similar tunneling frequencies were observed at all skeletal sites in all groups. Iliac crest biopsies were also collected at baseline and after 6 months of treatment and showed significant time- and dose-related increases in tunnels. Although the pattern and magnitude of response varied slightly from site to site, PTH(1-84) treatment significantly increased Tb.N, as well as BV/TV and bone formation rate at all skeletal sites. A modest but statistically significant increase in trabecular thickness occurred only at the iliac crest. In summary, intratrabecular tunneling is rare in control monkeys, but increased substantially with PTH(1-84) treatment. This phenomenon provides a plausible explanation for the PTH(1-84)-induced increase in Tb.N observed in OVX monkeys. Moreover, these analyses allowed a comparison of the effects PTH(1-84) treatment on trabecular bone at multiple locations.  相似文献   

4.
OVX monkeys treated for 18 months with 1 or 5 microg/kg/d teriparatide [PTH (1-34)] had significantly stronger proximal femora relative to ovariectomized controls. Teriparatide enhancement of cortical area, cortical width, and trabecular bone volume seemed to more than compensate for the dose-dependent increase in cortical porosity. Beneficial effects of teriparatide treatment on the proximal femur persisted beyond the treatment period and may extend to the marrow. INTRODUCTION: We conducted a detailed quantitative analysis of the effects of teriparatide on the proximal femur of ovariectomized monkeys. Teriparatide increased bone mass, enhanced structural architecture, and strengthened the hip, despite increasing cortical porosity. MATERIALS AND METHODS: Monkeys were treated with vehicle (sham or OVX controls), 1 microg/kg/day teriparatide [parathyroid hormone (1-34); PTH1], or 5 microg/kg/day teriparatide (PTH5) for 18 months or for 12 months followed by 6 months of treatment withdrawal (PTH1W and PTH5W, respectively). Excised proximal femora were analyzed by microCT, conventional histomorphometry, and biomechanics.RESULTS AND CONCLUSIONS: The femoral neck showed significant reduction in trabecular bone volume (BV/TV) for OVX compared with sham, whereas PTH1 BV/TV was restored to sham levels and PTH5 BV/TV was greater than sham and OVX. The withdrawal groups had BV/TVs intermediate between sham and OVX. PTH1 had trabecular number (Tb.N) greater than OVX, and PTH5 Tb.N was greater than sham and OVX. The withdrawal groups had Tb.Ns intermediate between sham and OVX. No differences between groups were observed for trabecular orientation or trabecular thickness. Teriparatide dose-dependently increased bone formation rate and activation frequency in the femoral neck. Cellular composition analyses suggested a tendency of ovariectomy to increase adiposity of marrow by 100%, whereas PTH tended to reduce adipocyte number and increase osteoblast number compared with OVX. Analyses of the cortex showed dose-dependent elevation of cortical porosity, which was consistent with enhanced bone turnover with treatment. Cortical porosity was reduced after withdrawal of teriparatide, because PTH1W cortical porosity was lower than OVX, whereas PTH5W cortical porosity was intermediate between sham and OVX. Increased cortical porosity did not weaken the proximal femora. Biomechanics showed that ovariectomy weakened proximal femora compared with sham, but PTH1, PTH5, and PTH1W were stronger than OVX and not different from sham. PTH5W strength was intermediate between sham and OVX. Therefore, teriparatide had beneficial effects on the proximal femur, despite increasing cortical porosity. Cortical porosity did not adversely affect the mechanical integrity of the proximal femora, because enhanced cortical area and trabecular bone volume more than compensated for the porosity. Much of the beneficial effects of teriparatide were retained after 6 months withdrawal from treatment. PTH effects on the femoral neck were not limited to bone but may include inhibition of OVX-stimulated adiposity of the marrow.  相似文献   

5.
Iida-Klein A  Lu SS  Cosman F  Lindsay R  Dempster DW 《BONE》2007,40(2):391-398
Previously, we demonstrated that the human parathyroid hormone (1-34) fragment (hPTH(1-34)) increased bone strength in proportion to its effects on BMD and cortical bone structure in the murine femur by comparing cyclic vs. daily administration of hPTH(1-34). Both cyclic and daily regimens increased vertebral BMD similarly at 7 weeks. Here, we have examined the effects of daily and cyclic PTH regimens on bone structure and cellular activity by static and dynamic histomorphometry. Twenty-week-old, intact female C57BL/J6 mice were treated with the following regimens (n=7 for each group): daily injection with vehicle for 7 weeks [control]; daily injection with hPTH(1-34) (40 microg/kg/day) for 7 weeks [daily PTH]; and daily injection with hPTH(1-34) (40 microg/kg/day) and vehicle alternating weekly for 7 weeks [cyclic PTH]. At days 9 and 10, and 2 and 3 prior to euthanasia, calcein (10 mg/kg) was injected subcutaneously. At the end of study, the lumbar vertebrae 1-3 and the left femora were excised, cleaned, and processed for histomorphometry. In the lumbar vertebrae, daily and cyclic PTH regimens significantly increased cancellous bone volume (BV/TV), trabecular number, trabecular osteoclast and osteoblast perimeters, trabecular mineral apposition rate (MAR) and bone formation rate (BFR), and periosteal MAR and BFR compared to control, with no significant difference between the two PTH-treated groups. Increased trabecular tunneling was observed in both PTH-treated groups. Both regimens tended to increase vertebral cortical bone formation parameters with the effects at the periosteum site being more marked than those at the endosteum site, resulting in a significant increase in cortical width. In the femur, the effects of cyclic PTH on BV/TV, trabecular width and number, trabecular and endocortical osteoblast and osteoclast perimeters, cortical width, and trabecular and periosteal BFR were less marked than those of daily PTH. A cyclic PTH regimen was as effective as a daily regimen in improving cancellous and cortical bone microarchitecture and cellular activity in the murine vertebra.  相似文献   

6.
The combination of PTH with OPG has been proposed as a potential therapy in patients with severe osteoporosis. In the present study, we examined the bone material of aged ovariectomized (OVX) rats treated either with PTH (1-34) or OPG alone or in combination of both. The micro- and nanostructural characteristics of the mineralized bone were evaluated using quantitative backscattered electron imaging (qBEI) and small-angle X-ray scattering (SAXS). Rats (n=68) were either sham-operated or ovariectomized (OVX) at the age of 3 months, and 15 months later, OVX animals were treated either with vehicle, OPG (10 mg/kg), PTH (80 microg/kg) or a combination of both during 5.5 months. All treatments were by subcutaneous injection, 3 days per week. Secondary metaphyseal spongiosa from distal femora was assessed for mineralized bone volume (BV/TV), for the mean Ca-concentration (Camean), the width of the bone mineralization density distribution (Cawidth), as well as the average mineral particle thickness parameter (T) and the degree of alignment of the mineral particles (rho). A remarkable increase of BV/TV up to 139% (P<0.001) was observed in the PTH-treated groups independently of OPG. Camean was slightly increased (+1.7%, P<0.05) in the OPG-treated group. Cawidth was reduced (-6.4%, P<0.01, and -8.9%, P<0.001) in animals treated with OPG and PTH+OPG, respectively. In contrast, Cawidth in sham-operated rats was 16.0% (P<0.001) higher than in OVX. The T parameter was not altered in the trabecular bone within the group of treated and untreated OVX rats. However, the non-ovariectomized animals exhibited a significantly lower T value (-7.1%, P<0.01) with respect to OVX. In conclusion, qBEI and SAXS data of OVX rats suggest that PTH alone was responsible for increase of bone volume, whereas OPG positively influenced the homogeneity and density of mineralization without affecting the nanostructure of the bone material.  相似文献   

7.
Generally, it is believed that intermittent administration of parathyroid hormone (PTH) has an anabolic effect on the skeleton, whereas continuous administration is catabolic. However, there is evidence that continuous exposure to PTH may have an anabolic effect, for example, in patients with mild primary hyperparathyroidism (PHPT). The possibility of delivering PTH continuously may have important implications for the treatment of osteoporosis. Furthermore, estrogen treatment may be useful in the medical management of PHPT. Therefore, we examined the skeletal effects of continuous administration of PTH, with or without estrogen, in the estrogen-deficient rat with established osteopenia. Forty 7-month-old SD rats were divided into four ovariectomy (OVX) groups and one sham-operated group. Eight weeks post-OVX, three groups received subcutaneous implants of Alzet mini pumps loaded with PTH(1-34) (30 microg/kg per day), 17beta-estradiol (10 microg/kg per day) pellet, or both PTH and 17beta-estradiol separately for 4 weeks. OVX and sham control groups were given the mini pumps loaded with vehicle. Two doses of calcein (10 mg/kg) were given subcutaneously to all rats 2 days and 8 days before death. Histomorphometry was performed on cancellous and cortical bone of the fourth lumbar vertebra. At 3 months, post-OVX rats displayed bone loss with high bone turnover. Estrogen reversed OVX-mediated high turnover without restoring cancellous bone volume (BV/TV). PTH infusion further increased bone turnover and partially restored BV/TV. However, PTH infusion increased cortical porosity. Estrogen inhibited PTH-mediated cancellous bone resorption and substantially increased BV/TV above sham control. The combined treatment was associated with a significant increase in peritrabecular fibrosis and woven bone formation. The combined treatment of PTH infusion and estrogen replacement enhanced cortical width but estrogen did not prevent the PTH-induced cortical tunneling. We conclude that continuous administration of PTH and estrogen increases cortical porosity but has substantial beneficial effects on vertebral cancellous bone volume and cortical width in OVX rats.  相似文献   

8.
Washimi Y  Ito M  Morishima Y  Taguma K  Ojima Y  Uzawa T  Hori M 《BONE》2007,41(5):786-793
We examined the combined effects of human parathyroid hormone 1-34 (hPTH) and elcatonin (ECT: a synthetic derivative of eel calcitonin) to prevent loss of bone mass, architecture and strength in ovariectomized (OVX) rats. Fifty-four female rats (aged 13 weeks) were assigned to one of nine groups: Sham (fake surgery performed), OVX, ECT (15 U/kg administered), PTH5, PTH10 and PTH20 (5, 10 or 20 microg/kg administered), and E+PTH5, E+PTH10 and E+PTH20 (15 U/kg of ECT and 5, 10 or 20 microg/kg of hPTH administered). The drug or vehicle was subcutaneously administered three times a week for 12 weeks. The femurs were removed at the completion of the experiment. The right distal femoral metaphysis was used for measuring bone mineral density (BMD), analyzing trabecular bone structure by micro-computed tomography (microCT), and conducting the bone strength test, and the left femur was used for histomorphometric analysis. Trabecular bone volume (BV/TV) and other bone mass parameters were greater in the ECT and PTH groups than in the OVX group. The number of nodes (N.Nd/TV) and trabecular number (Tb.N) were significantly greater in the ECT group, and trabecular thickness (Tb.Th) and trabecular bone pattern factor (TBPf) were significantly greater in the PTH group. These results indicate that these drugs preserve the bone architecture by different means. Analysis by means of microCT revealed that BV/TV, Tb.N, fractal D and N.Nd/TV were significantly greater in the E+PTH groups than in the PTH groups at each concentration. Trabecular separation (Tb.Sp) was significantly lower in the E+PTH5 and E+PTH10 groups than in the respective PTH5 and PTH10 groups. When the maximum load was applied in a compression test on the distal femur, the E+PTH groups had higher values than the PTH groups, however, the three point bending strength of the diaphysis of femur in the E+PTH10 and E+PTH20 groups tended to be low compared to those in the PTH10 and PTH20 groups. These results indicate that combination therapy using PTH and ECT preserves the trabecular microarchitecture better than single-drug therapy using ECT or PTH in OVX rats, however, it is necessary to optimize the calcitonin (CT) dosage and administration in order to achieve the optimal combined effect of PTH and CT.  相似文献   

9.
The effects of GPCR systems in bone are regulated by a family of enzymes termed GRKs. We found that (1) GRK inhibition in osteoblasts has age-dependent effects on bone mass, and (2) the anabolic actions of GRK inhibition are revealed by treatment with PTH(1-34). INTRODUCTION: The effects of G-protein-coupled receptor (GPCR) systems in bone are modulated by a family of enzymes termed GPCR kinases (GRKs). These enzymes directly phosphorylate GPCR substrate and desensitize receptor signaling. We previously found that expression of a GRK inhibitor in osteoblasts using transgenic (TG) technologies enhanced bone remodeling, and in turn, increased BMD in 6-week-old TG mice compared with non-TG littermate controls, presumably because of enhanced GPCR function. The aim of this study was to determine the age-dependent effects of the transgene. MATERIALS AND METHODS: BMD was monitored in TG mice and in controls at 6-week, 3-month, and 6-month time-points. To determine if the transgene enhanced responsiveness of bone to parathyroid hormone (PTH), we measured cyclic adenosine monophosphate (cAMP) generation by mouse calvaria ex vivo as well as the effects of treatment with PTH(1-34) on BMD, bone histomorphometry, and expression of the PTH-responsive gene RANKL in both TG mice and non-TG controls. RESULTS: Consistent with our previous findings, we found that BMD was increased in TG mice compared with controls at 6 weeks of age. The increase in BMD was most prominent in trabecular-rich lumbar spine and was not observed in cortical bone of the femoral shaft. In contrast to younger animals, however, BMD in older TG mice was not statistically different compared with non-TG mice at 3 months of age and was similar to non-TG animals at 6 months of age. The GRK inhibitor seemed to promote GPCR activation in older mice, however, because (1) PTH-induced cAMP generation by mouse calvaria ex vivo was enhanced in TG mice compared with controls, (2) GRK inhibition increased responsiveness of lumbar spine to the osteoinductive actions of PTH(1-34), and (3) the enhanced anabolic effect of PTH(1-34) was associated with increased expression of the PTH-responsive gene RANKL in calvaria of the TG animals. Bone histomorphometry confirmed that PTH(1-34) increased trabecular bone volume in TG mice and found that this increase in bone mass was caused by enhanced bone formation, predominantly as a result of an increase in the mineral apposition rate (MAR). CONCLUSIONS: These data suggest that the anabolic effects of GRK inhibition are age dependent. The osteoinductive actions of the GRK inhibitor are, however, unmasked by treatment with PTH(1-34).  相似文献   

10.
Recently, basic fibroblast growth factor (bFGF) has been found to increase trabecular bone mass and connectivity in the proximal tibial metaphyses (PTM) in osteopenic rats. The purpose of this study was to determine the bone anabolic effects of bFGF in the lumbar vertebral body (LVB), a less loaded skeletal site with a lower rate of bone turnover than the PTM. Six-month old female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated and untreated for 8 weeks to induce osteopenia. Then group 1 (sham) and group 2 (OVX) were treated subcutaneously (SC) with vehicle, and OVXed groups 3 and 4 were treated SC with PTH [hPTH (1–34) at 40 g/kg, 5×/week] and bFGF (1 mg/kg, 5×/week), respectively, for 8 weeks. At sacrifice, the fifth LVB was removed, subjected to micro-CT for determination of trabecular bone structure and then processed for histomorphometry to assess bone turnover. The sixth LVB was used for mechanical compression testing (MTS, Bionix 858). The data were analyzed with the Kruskal-Wallis test followed by post-hoc testing as needed. After 16 weeks of estrogen deficiency, there were significant reductions in vertebral trabecular bone volume and trabecular thickness. Treatment with either bFGF or hPTH (1–34) increased BV/TV in OVX animals. Human PTH (1–34)-treated animals had significant increases in trabecular (48%) and cortical thickness (30%) and bone strength [maximum load (53%) and work to failure (175%)] compared to OVX + Vehicle animals. Treatment of osteopenic rats with bFGF increased bone volume (15%), trabecular thickness (13%), maximum load (45%) and work to failure (140%) compared to OVX + Vehicle animals (all P <0.05). Basic FGF increased trabecular bone volume in the lumbar vertebral body of osteopenic rats by restoring trabecular number, thickness and connectivity density. Also, bFGF improved bone mechanical properties (maximum force and work to failure) compared to the OVX + Vehicle group. Therefore, increasing the number, thickness and connections of the trabeculae contributes to increased bone strength in this small animal model of osteoporosis.This work was supported by grants from the NIH 1R01AR43052 and the Rosalind Russell Arthritis Research Center.  相似文献   

11.
Bone turnover requires the interaction of several proteases during the resorption phase. Indirect evidence suggests that the plasminogen activator/plasmin pathway is involved in bone resorption and turnover, and recently we have shown that this cascade plays a role in the degradation of nonmineralized bone matrix in vitro. To elucidate the role of the plasminogen activator inhibitor 1 (PAI-1) in bone turnover in vivo, bone metabolism was analyzed in mice deficient in the expression of PAI-1 gene (PAI-1-/-) at baseline (8-week-old mice) and 4 weeks after ovariectomy (OVX) or sham operation (Sham) and compared with wild-type (WT) mice. PAI-1 inactivation was without any effect on bone metabolism at baseline or in Sham mice. However, significant differences were observed in the response of WT and PAI-1-/- mice to ovariectomy. The OVX WT mice showed, as expected, decreased trabecular bone volume (BV/TV) and increased osteoid surface (OS/BS) and bone formation rate (BFR), as assessed by histomorphometric analysis of the proximal tibial metaphysis. In contrast, no significant change in any of the histomorphometric variables studied was detected in PAI-1-/- mice after ovariectomy. As a result, the OVX PAI-1-/- had a significantly higher BV/TV, lower OS/BS, lower mineral apposition rate (MAR) and BFR when compared with the OVX WT mice. However, a comparable decrease in the cortical thickness was observed in OVX PAI-1-/- and WT mice. In addition, the cortical mineral content and density assessed in the distal femoral metaphysis by peripheral quantitative computed tomography (pQCT), decreased significantly after ovariectomy, without difference between PAI-1-/- mice and WT mice. In conclusion, basal bone turnover and bone mass are only minimally affected by PAI-1 inactivation. In conditions of estrogen deficiency, PAI-1 inactivation protects against trabecular bone loss but does not affect cortical bone loss, suggesting a site-specific role for PAI-1 in bone turnover.  相似文献   

12.
There is a subset of women who experience particularly rapid bone loss during and after the menopause. However, the factors that lead to this enhanced bone loss remain obscure. We show that patterns of bone loss after ovariectomy vary among inbred strains of mice, providing evidence that there may be genetic regulation of bone loss induced by estrogen deficiency. INTRODUCTION: Both low BMD and increased rate of bone loss are risk factors for fracture. Bone loss during and after the menopause is influenced by multiple hormonal factors. However, specific determinants of the rate of bone loss are poorly understood, although it has been suggested that genetic factors may play a role. We tested whether genetic factors may modulate bone loss subsequent to estrogen deficiency by comparing the skeletal response to ovariectomy in inbred strains of mice. MATERIALS AND METHODS: Four-month-old mice from five inbred mouse strains (C3H/HeJ, BALB/cByJ, CAST/EiJ, DBA2/J, and C57BL/6J) underwent ovariectomy (OVX) or sham-OVX surgery (n = 6-9/group). After 1 month, mice were killed, and microCT was used to compare cortical and trabecular bone response to OVX. RESULTS: The effect of OVX on trabecular bone varied with mouse strain and skeletal site. Vertebral trabecular bone volume (BV/TV) declined after OVX in all strains (-15 to -24%), except for C3H/HeJ. In contrast, at the proximal tibia, C3H/HeJ mice had a greater decline in trabecular BV/TV (-39%) than C57BL/6J (-18%), DBA2/J (-23%), and CAST/EiJ mice (-21%). OVX induced declines in cortical bone properties, but in contrast to trabecular bone, the effect of OVX did not vary by mouse strain. The extent of trabecular bone loss was greatest in those mice with highest trabecular BV/TV at baseline, whereas cortical bone loss was lowest among those with high cortical bone parameters at baseline. CONCLUSIONS: We found that the skeletal response to OVX varies in a site- and compartment-specific fashion among inbred mouse strains, providing support for the hypothesis that bone loss during and after the menopause is partly genetically regulated.  相似文献   

13.
Osteoporosis is a syndrome of excessive skeletal fragility that results from both the loss of trabecular bone mass and trabecular bone connectivity. Recently, bFGF has been found to increase trabecular bone mass in osteoporotic rats. The purpose of this study was to compare how trabecular bone architecture, bone cell activity, and strength are altered by two different bone anabolic agents, bFGF and hPTH(1-34), in an osteopenic rat model. MATERIALS AND METHODS: Six-month-old female Sprague-Dawley rats (n = 74) were ovariectomized (OVX) or sham-operated (sham) and maintained untreated for 2 months. Then OVX rats were subcutaneously injected with basic fibroblast factor (bFGF; 1 mg/kg, 5 days/week), human parathyroid hormone [hPTH(1-34); 40 microg/kg, 5 days/week], or vehicle for 60 days (days 60-120). Sham-operated and one group of OVX animals were injected with vehicle. Biochemical markers of bone turnover (urinary deoxypyridinoline cross-links; Quidel Corp., San Diego, CA, USA) and serum osteocalcin (Biomedical Technologies, Stroughton, MA, USA) were obtained at study days 0, 60, 90, and 120 and analyzed by ELISA. At death, the right proximal tibial metaphysis was removed, and microcomputed tomography was performed for trabecular bone structure and processed for histomorphometry to assess bone cell activity. The left proximal tibia was used for nanoindentation/mechanical testing of individual trabeculae. The data were analyzed with Kruskal Wallis and post hoc testing as needed. RESULTS: Ovariectomy at day 60 resulted in about a 50% loss of trabecular bone volume compared with sham-treated animals. By day 120 post-OVX, OVX + vehicle treated animals had decreased trabecular bone volume, connectivity, number, and high bone turnover compared with sham-operated animals [p < 0.05 from sham-, hPTH(1-34)-, and bFGF-treated groups]. Treatment of OVX animals with bFGF and hPTH(1-34) both increased trabecular bone mass, but hPTH(1-34) increased trabecular thickness and bFGF increased trabecular number and connectivity. Histomorphometry revealed increased mineralizing surface and bone formation rate in both bFGF and hPTH(1-34) animals. However, osteoid volume was greater in bFGF-treated animals compared with both the hPTH(1-34) and OVX + vehicle animals (p < 0.05). Nanoindentation by atomic force microscope was performed on approximately 20 individual trabeculae per animal (three animals per group) and demonstrated that elastic modulus and hardness of the trabeculae in bFGF-treated animals were similar to that of the hPTH-treated and sham + vehicle-treated animals. CONCLUSION: Both hPTH(1-34) and bFGF are anabolic agents in the osteopenic female rat. However, hPTH(1-34) increases trabecular bone volume primarily by thickening existing trabeculae, whereas bFGF adds trabecular bone mass through increasing trabecular number and trabecular connectivity. These results suggest the possibility of sequential treatment paradigms for severe osteoporosis.  相似文献   

14.
Osteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not known. We evaluated these effects in an osteoporotic rat model. Six‐month‐old ovariectomized (OVX) rats were treated with placebo, alendronate (ALN, 2 µg/kg), parathyroid hormone [PTH(1–34); 20 µg/kg], or raloxifene (RAL, 2 mg/kg) three times a week for 4 months and withdrawn from the treatments for 8 months. Treatment with ALN, PTH, and RAL increased the vertebral trabecular bone volume (BV/TV) by 47%, 53%, and 31%, with corresponding increases in vertebral compression load by 27%, 51%, and 31%, respectively (p < .001). The resulting bone strength was similar to that of the sham‐OVX control group with ALN and RAL and higher (p < .001) with PTH treatment. After 4 months of withdrawal, bone turnover (BFR/BS) remained suppressed in the ALN group versus the OVX controls (p < .001). The vertebral strength was higher than in the OVX group only in ALN‐treated group (p < .05), whereas only the PTH‐treated animals showed a higher maximum load in tibial bending versus the OVX controls (p < .05). The vertebral BV/TV returned to the OVX group level in both the PTH and RAL groups 4 months after withdrawal but remained 25% higher than the OVX controls up to 8 months after withdrawal of ALN (p < .05). Interestingly, cortical bone mineral density increased only with PTH treatment (p < .05) but was not different among the experimental groups after withdrawal. At 8 months after treatment withdrawal, none of the treatment groups was different from the OVX control group for cortical or cancellous bone strength. In summary, both ALN and PTH maintained bone strength (maximum load) 4 months after discontinuation of treatment despite changes in bone mass and bone turnover; however, PTH maintained cortical bone strength, whereas ALN maintained cancellous bone strength. Additional studies on the long‐term effects on bone strength after discontinuation and with combination of osteoporosis medications are needed to improve our treatment of osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

15.
It is commonly believed that the parathyroid hormone's (PTH's) main function in bone is to stimulate osteoclastic resorption. However, intermittent injections of small doses of PTH holoprotein, but more often its bioactive hPTH-(1–34) fragment, have been shown to stimulate bone growth in animals and humans through their ability to stimulate adenylyl cyclase and not their ability to independently activate a protein kinases-C stimulating mechanism. This anabolic action suggests that PTH might be an effective therapeutic for osteoporosis. If so, the hormone must be able to restore severely depleted trabecular bone, and the goal of this study was to find out if it can. To do this, we started a multiweek program of daily subcutaneous injections of 0.8 nmoles of hPTH-(1–34)/100 g body weight into rats at 4, 8, or 16 weeks after ovariectomy (OVX) and the increasingly severe selective loss of trabecular bone. These injections strongly stimulated femoral trabecular bone to grow and mineralize at the same rate regardless of how much of it had been lost before the injections were started. Thus, the progressively depleting trabecular bone in the femurs of OVX rats does not lose its anabolic responsiveness to PTH. This finding is another indication of the likelihood of small, adenylyl cyclase-stimulating PTH fragments being effective therapeutics for osteoporosis.  相似文献   

16.
Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1-34) sharing only 53% identity with hPTH(1-34). Here we demonstrate the in vivo actions of fPth1(1-34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 microg-1,000 microg/kg body weight (b.w.), (30fPth1-1,000fPth1)] or hPTH [30 microg-100 microg/kg b.w. (30hPTH-100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 microg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1-34), we have clearly established the efficacy of fPth1 (1-34) as an anabolic bone agent.  相似文献   

17.
Introduction: Intermittent 1-34 parathyroid hormone (iPTH) administration, a bone-forming treatment, is widely used as a therapy for severe osteoporosis. It can only be used for a maximum of 24 mo and must be followed by an antiresorptive drug to retain the new formed tissue. Mechanical load, in the form of low-intensity and high-frequency vibration, has received considerable attention due to its ability to prevent bone loss. Aim: To investigate the ability of whole body mechanical vibration (MV) to potentiate the anabolic effects of iPTH and to inhibit bone resorption following discontinuation of iPTH treatment in estrogen-deficient rats. Methodology: Fifty-four 6-month-old female Wistar rats were ovariectomized (OVX) or sham-operated. After 5 mo, they were divided into 7 groups: Sham – non-OVX; Control – OVX, vehicle for 60 d; MV – OVX, submitted to MV for 60 d; PTH60d – OVX, injected with iPTH for 60 d; PTH+MV – OVX, injected with iPTH combined with MV for 60 d; PTH30d – OVX, injected with iPTH for 30 d, and untreated for 30 d; PTH30d/MV30d – OVX, injected with iPTH for 30 d, followed by MV for 30 d. Bone mineral density (BMD) and body composition (lean mass and fat) were evaluated at OVX (T0), the beginning (T1), and at the end (T2) of treatments by dual X-ray absorptiometry (DXA). Femurs were processed for histomorphometry (bone volume - BV/TV and cortical thickness - Ct.Th) and tibias for biomechanical test. Results: Body composition and BMD were similar among the groups at T0. In T2, MV presented higher fat than other groups (except PTH60d) and PTH30d/MV30d showed greater lean mass than Control. At T1, Sham presented the highest BMD, but between T1 vs T2 there was an increase in all iPTH-treated groups. At T2, BMD was higher in PTH60d and PTH+MV than in the Control and MV groups. The highest BV/TV was observed in the PTH+MV group, followed by PTH60d. Cortical thickness was increased in PTH60d and PTH+MV compared to Sham. Vibration applied post-iPTH (PTH30d/MV30d) improved the force at failure in tibias when compared to Sham and Control groups. Conclusion: MV potentiated iPTH anabolic effects in cancellous bone; however, MV was unable to maintain bone mass after stopping iPTH in ovariectomized rats.  相似文献   

18.

Background  

Statins, potent compounds that inhibit cholesterol synthesis in the liver have been reported to induce bone formation, both in tissue culture and in rats and mice. To re-examine potential anabolic effects of statins on bone formation, we compared the activity of simvastatin (SVS) to the known anabolic effects of PTH in an established model of ovariectomized (OVX) Swiss-Webster mice.  相似文献   

19.
Male osteoporosis is emerging as a central theme in bone research. As in females, hypogonadism appears as a principal risk factor in men that leads to bone loss and increased fracture incidence. Intermittently administered parathyroid hormone (PTH) reverses bone loss in sex hormone-deprived women and female animals and increases bone mass in elderly men and normal male animals. This study was carried out to assess whether the PTH anabolic activity is also effective in adult castrated males and to gain insight into the underlying tissue processes. Bilateral orchiectomy (ORX) or sham-ORX was performed in 13-week old rats. Five weeks later, the ORX rats were treated intermittently with human PTH(1–34), 80 g/kg/day or vehicle for 6 weeks. Femora were evaluated by quantitative micro-computed tomography followed by dynamic histomorphometry. The trabecular bone volume density showed 40% and 56% ORX-induced loss in the distal metaphysis at 6 weeks and 12 weeks post-ORX, respectively. PTH(1–34) induced supraphysiologic recovery of this bone loss (155% recovery) consequent to a vast increase in trabecular thickness (174% over sham-ORX controls) and a partial reversal (62%) of the decrease in trabecular number. As compared with the results in 12-week, orchiectomized vehicle-administered rats, the PTH(1–34) treatment induced a significant decrease in osteoclast number (20%) and twofold increase in bone formation rate. While ORX did not affect the femoral diaphysis, PTH(1–34) induced marked cortical thickening via the stimulation of endosteal mineral appositional rate (154% over ORX rats). These data portray PTH(1–34) as a highly potent bone anabolic agent in adult ORX rats, mainly by increasing both the trabecular and cortical thicknesses through its effect on osteoblasts and osteoclasts. The adult ORX rat is useful for investigating the processes involved in bone anabolic activity in castrated osteoporotic males and for the development of bone anabolic agents for treating this condition.  相似文献   

20.
Current approved medical treatments for osteoporosis reduce fracture risk to a greater degree than predicted from change in BMD in women with postmenopausal osteoporosis. We hypothesize that bone active agents improve bone strength in osteoporotic bone by altering different material properties of the bone. Eighteen‐month‐old female Fischer rats were ovariectomized (OVX) or sham‐operated and left untreated for 60 days to induce osteopenia before they were treated with single doses of either risedronate (500 μg/kg, IV), zoledronic acid (100 μg/kg, IV), raloxifene (2 mg/kg, PO, three times per week), hPTH(1–34) (25 μg/kg, SC, three times per week), or vehicle (NS; 1 ml/kg, three times per week). Groups of animals were killed after days 60 and 180 of treatment, and either the proximal tibial metaphysis or lumbar vertebral body were studied. Bone volume and architecture were assessed by μCT and histomorphometry. Measurements of bone quality included the degree of bone mineralization (DBM), localized elastic modulus, bone turnover by histomorphometry, compression testing of the LVB, and three‐point bending testing of the femur. The trabecular bone volume, DBM, elastic modulus, and compressive bone strength were all significantly lower at day 60 post‐OVX (pretreatment, day 0 study) than at baseline. After 60 days of all of the bone active treatments, bone mass and material measurements agent were restored. However, after 180 days of treatment, the OVX + PTH group further increased BV/TV (+30% from day 60, p < 0.05 within group and between groups). In addition, after 180 days of treatment, there was more highly mineralized cortical and trabecular bone and increased cortical bone size and whole bone strength in OVX + PTH compared with other OVX + antiresorptives. Treatment of estrogen‐deficient aged rats with either antiresorptive agents or PTH rapidly improved many aspects of bone quality including microarchitecture, bone mineralization, turnover, and bone strength. However, prolonged treatment for 180 days with PTH resulted in additional gains in bone quality and bone strength, suggesting that the maximal gains in bone strength in cortical and trabecular bone sites may require a longer treatment period with PTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号