首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium-ion batteries(SIBs) have emerged as one of the most promising candidates for next-generation energy storage systems because sodium is abundant in nature.The practical application of SIBs critically depends on developing robust electrode materials with high specific capacity and long cycling life,developing suitable anode materials is even more challenging.Alloy-type anodes are attractive for their high gravimetric and volumetric specific capacities,demonstrating great potential for high-energy SIBs,however,huge volume swelling hampered their practical application.Given the encouraging breakthroughs on alloy anodes for SIBs,herein,we present a review of the up-to-date progress and works carried out with alloy-based anode materials for SIBs.We review the synthetic strategies and their detailed electrochemical performance.In particular,we extensively reveal the important roles of alloy-based anodes in the development of SIBs.Research progress of alloy-type anodes and their compounds for sodium storage is summarized.Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed.Finally,we proposed multi-component alloys/high-entropy alloys(HEAs) as further research directions for alloy-based anodes.  相似文献   

2.
Lithium batteries(LIBs) with low capacity graphite anode(~372 mAh g~(-1)) cannot meet the ever-growing demand for new energy electric vehicles and renewable energy storage.It is essential to replace graphite anode with higher capacity anode materials for high-energy density LIBs.Silicon(Si) is well known to be a possible alternative for graphite anode due to its highest capacity(~4200 mAh g~(-1)).Unfortunately,large volume change during lithiation and delithiation has prevented the Si anode from being commercialized.Metal silicides are a promising type of anode materials which can improve cycling stability via the accommodation of volume change by dispersing Si in the metal inactive/active matrix,while maintain greater capacity than graphite.Here,we present a classification of Si alloying with metals in periodic table of elements,review the available literature on metal silicide anodes to outline the progress in improving and understanding the electrochemical performance of various metal silicides,analyze the challenges that remain in using metal silicides,and offer perspectives regarding their future research and development as anode materials for commercial LIBs application.  相似文献   

3.
在现有的各类锂离子电容器(LICs)负极材料中,铌基氧化物被认为是很有前景的电极材料。本文以Nb_2O_5、M-Nb-O(M=Ti, Cr, Ga, Fe, Zr, Mg, Li, Na, K等)和(H, Li, K)-Ti-Nb-O等负极材料为例,介绍了铌基氧化物作为锂离子电容器负极材料的优势、储锂机制和常见的合成方法,并提出了该材料目前存在的问题和相应的解决方案,以促进其在新兴储能器件领域的进一步推广和发展。  相似文献   

4.
石墨是目前商业化锂离子电池应用最广的负极材料,日益增长的市场需求对石墨负极材料的储锂性能提出了更高的要求。概述了锂离子电池的工作原理和石墨嵌锂机制,针对石墨负极材料理论比容量(372 mA.h/g)较低和电解液兼容性较差等问题,总结了近年来石墨负极材料的改性手段,主要分为表面改性和结构调控等2类,其中表面改性技术包括氧化和卤化处理,特点是通过调控界面化学性质,可增强石墨结构的稳定性,促进稳定SEI膜的形成,但对于石墨储锂容量的提升非常有限;结构调控包括剥层法和缺陷构筑法,特点是通过扩大石墨层间距、降低石墨维度及在石墨结构上构筑缺陷,从而增加锂离子的活性位点,提供更多锂离子扩散通道,缓解循环过程中的体积变化,改善石墨与电解液的相容性,显著提升石墨的储锂性能。最后对石墨负极材料的未来发展趋势进行了展望。  相似文献   

5.
Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries(MIBs)because of their theoretical high gravimetrical capacities.Semimetals and semimetal-analogs are typical alloy-type anodes.Currently,the large-scale extraction of semimetals(Si,Ge) and semimetal-analogs(Sb,Bi,Sn) by traditional metallurgical routes highly relies on using reducing agents(e.g.,carbon,hydrogen,reactive metals),which consumes a large number of fossil fuels and produces greenhouse gas emissions.In addition,the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals.However,the commonly used electrode materials in batteries are fine powders.Thus,directly producing semimetal powders would be more energy efficient.In addition,semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high.Therefore,preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint.Low-cost and high-output capacity anode powder materials,as well as straightforward and environmental-benign synthetic methods,play key roles in enabling the energy conversion and storage technologies for real applications of MIBs.Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies.Besides,the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials,electrolytes,and operating temperatures.In this regard,using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs.This review critically overviews recent developments and advances in the electrochemical extraction of semimetals(Si,Ge) and semimetal-analogs(Sb,Bi,Sn) for MIBs,including basic electrochemical principles,thermodynamic analysis,manufacture strategies and applications in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),potassium-ion batteries(PIBs),magnesium-ion batteries(Mg-ion batteries),and liquid metal batteries(LMBs).It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.  相似文献   

6.
The use of Li-ion batteries for stationary energy storage systems to complement the renewable energy sources such as solar and wind power has recently attracted great interest. Currently available Li-ion battery electrode materials suitable for such stationary applications have been discussed, along with optimum cathode and anode combinations, limitations, and future research directions.  相似文献   

7.
Aluminum-air(Al-air) batteries are promising candidates for energy storage applications because of their high theoretical energy density and low cost.Nevertheless,their developments have been severely hindered by multiple obstacles,among which the activation and self-corrosion inhibition of Al anode have been considered to be significant challenges.In neutral electrolytes,the main problem is the activation of Al anode,while the self-corrosion of Al anode becomes dominant in alkaline electrolytes.Considerable efforts have been devoted to overcoming the dilemma associated with the Al anode.This review firstly underscores the underlying mechanisms of passivation and self-corrosion of Al anode in different electrolytes.Then,specific attentions are paid to Al alloy anode,including the role of various elements and standard processing technology.Finally,general conclusions,current limitations,and future perspectives on Al alloy anode are presented.  相似文献   

8.
锂离子电池是高效、清洁的储能装置,在便携式电子产品、储能设施和电动汽车等领域具有广泛的应用前景,对于缓解能源危机和环境污染具有重要意义。橄榄石型LiFePO_4是最有前途的锂离子电池正极材料之一。然而,相对低的本征电子电导率与锂离子扩散速率限制了LiFePO_4倍率性能的发挥,阻碍其在动力锂离子电池领域的大规模商业化应用。纳米化是一种能有效改善LiFePO_4倍率性能的方法,但纳米粒子存在表面能高,易团聚结块,性能衰减较快等问题。近些年的研究表明,三维多孔结构的LiFePO_4兼具纳米与微米级活性材料的优点,是LiFePO_4正极材料的研究热点和重要的发展方向。本文从合成方法、形貌结构、电化学性能以及结构—性能关系等方面系统总结多孔LiFePO_4材料的研究进展,并展望其发展前景。  相似文献   

9.
锂离子电池是一种高效、清洁的储能装置,在便携式电子产品、储能设施和电动汽车等领域具有广泛的应用前景,对于缓解能源危机、环境污染和优化能源结构等方面具有重要意义。橄榄石型LiFePO_4是最有前途的锂离子电池正极材料之一,但较低的本征电子电导率与锂离子扩散速率限制了其高倍率性能的发挥及在锂离子动力电池中的广泛应用。纳米碳材料,尤其氮掺杂的无定形纳米碳、碳纳米管以及石墨烯等具有电子电导率高,比表面积大,亲和力强以及热、化学稳定性好等特点,在改善LiFePO_4材料性能方面显示出独特的优势。本文从掺杂方法、形貌结构、电化学性能等方面总结氮掺杂纳米碳改性LiFePO_4正极材料的研究进展,并展望其发展前景。  相似文献   

10.
锑具有首次嵌/脱锂容量大等优点,是制备大容量高安全性锂离子电池负极潜在的优良材料。本文介绍了此系列材料的制备方法、特性及其用途。  相似文献   

11.
In recent years,there has been significant growth in the demand for secondary batteries,and researchers are increasingly taking an interest in the development of nextgeneration battery systems.Magnesium-ion batteries(MIBs) have been recognized as the optimal alternative to lithium-ion batteries(LIBs) due to their low cost,superior safety,and environment-friendliness.However,research and development on rechargeable MIBs are still underway as some serious problems need to be resolved.One of the most serious obstacles is the generation of an irreversible passivation layer on the surface of the Mg anode during cycling.In addition to exploring new electrolytes for MIBs,alternative anode materials for MIBs might be an effective solution to this issue.In this review,the composition and working principle of MIBs have been discussed.In addition,recent advances in the area of anode materials(metals and their alloys,metal oxides,and two-dimensional materials) available for MIBs and the corresponding Mg-storage mechanisms have also been summarized.Further,feasible strategies,including structural design,dimension reduction,and introduction of the second phase,have been employed to design high-performance MIB anodes.  相似文献   

12.
锂离子电池具有能量密度高、自放电小和循环寿命长等优点,被广泛用于便携式电子设备和电动汽车等方面,不断推动着社会朝着智能化和清洁化方向发展.简要阐述了锂离子电池的发展历程和工作原理,从材料结构和储锂机制方面对正极材料和负极材料进行分类并综述其性能特点与研究现状,介绍了液态电解液中锂盐、溶剂、添加剂以及固态电解质在锂离子电...  相似文献   

13.
Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life, low cost and safety is still underway. A number of cobalt-based compounds(Co(OH)_2, Co_3O_4, CoN, CoS,CoP, NiCo_2O_4, etc.) have been developed over the past years as promising anode materials for lithium ion batteries(LIBs) due to their high theoretical capacity, rich redox reaction and adequate cyclability. The LIBs performances of the cobalt-based compounds have been significantly improved in recent years, and it is anticipated that these materials will become a tangible reality for practical applications in the near future. However, the different types of cobalt-based compounds will result in diverse electrochemical performance. This review briefly analyzes recent progress in this field, especially highlights the synthetic approaches and the prepared nanostructures of the diverse cobalt-based compounds and their corresponding performances in LIBs, including the storage capacity, rate capability, cycling stability and so on.  相似文献   

14.
The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).  相似文献   

15.
The increasing need for energy storage systems has stimulated research for new batteries and improvements in old ones. A brief evaluation of the available batteries and systems under development will first be made. Owing to their particular properties, lamellar compounds can have interesting applications in this field. After a comparison between intercalation compounds of graphite and other layer compounds, trying to distinguish their respective advantages, the various proposals for graphite intercalation compounds as electrode materials in batteries will be discussed. It will be shown that their potentialities require further work.  相似文献   

16.
作为锂离子电池负极材料,硅基材料具有较高的理论比容量、适中的嵌/脱锂电位、与电解液反应活性低等特点,成为最有前景的锂离子电池负极材料之一。然而由于其巨大的体积效应和较低的导电性导致其商业化应用具有相当的挑战性。本文综述了近年来为改善硅基材料的缺点而做的一些研究,展望了硅基材料作为锂离子电池负极材料的发展趋势。  相似文献   

17.
Owing to the high spatial resolution at the atomic scale,the transmission electron microscopy(TEM)or scanning transmission electron microscopy is demonstrated as a promising characterization method to unveil the charge storage mechanism of electrode materials in Li-ion batteries.The structural evolution of electrode materials during charge/discharge process can be directly observed by using TEM.The detailed analysis establishes a relationship between the structure of electrode material and battery performance.Herein,we present a brief review of the atomic-scale characterization in Li-ion batteries,including Li(de)insertion mechanism(both cations and anions charge-compensation mechanism),migration of transition metal ions,and surface phase transition.The indepth microscopic analysis reveals the detailed structural characteristics,which influence the properties of LIBs,establish the structure-function relationship,and facilitate the development of Li-ion batteries.  相似文献   

18.
本文主要介绍近年来硅及含硅材料作为锂离子电池负极材料的研究进展,包括硅单质、硅的氧化物以及硅的金属化合物和其它硅基多元化合物;分析了硅基材料作为锂离子电池负极材料存在的问题;阐述了硅基材料作为锂离子电池负极材料的研究前景。  相似文献   

19.
Potassium-ion batteries(PIBs) are promising scalable energy storage system;however,one of the challenges for its potential application is the huge volume variations during cycling due to the insertion/extraction of large size potassium ions.Here,we fabricated the S-doped carbon-coated rod-like FeS_2/C@C,which not only effectively alleviate the volume variations upon cycling but also can improve electrical conductivity and maintain the structural integrity.As an anode material for PIBs,the rod-like FeS_2/C@C electrodes delivered excellent rate performance(175 mA h g~(-1) at 0.5 A g~(-1)) and stable cycle performance(262 mA h g~(-1) after 100 cycles at 0.1 A g~(-1)).The superior excellent performance is associated with the unique structure of FeS_2/C@C.The as-synthesized FeS_2/C@C is demonstrated to be a potential anode for PIBs.  相似文献   

20.
This review is devoted to new rare earth-Mg-Ni-based (R-Mg-Ni-based) hydrogen storage alloys that have been developed over the last decade as the most promising next generation negative electrode materials for high energy and high power Ni/MH batteries. Preparation techniques, structural characteristics, gas-solid reactions and electrochemical performances of this system alloy are systematically summarized and discussed. The improvement in electrochemical properties and their degradation mechanisms are covered in detail. Optimized alloy compositions with high discharge capacities, good electrochemical kinetics and reasonable cycle lives are described as well. For their practical applications in Ni/MH batteries, however, it is essential to develop an industrial-scale homogeneous preparation technique, and a low-cost R-Mg-Ni-based electrode alloy (low-Co or Co-free) with high discharge capacity, long cycle life and good kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号