首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Material antigenically related to the neuromodulatory peptide FMRFamide was detected and examined in preparations of the soybean cyst nematode, Heterodera glycines, and in the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus. FMRFamide-related peptides were quantified by an enzyme-linked immunosorbent assay. Specific activities were remarkably similar among all of the vermiform members of the three species. FMRFamide-related peptide immunoactivity was present in both sexes and all stages of H. glycines examined. The highest specific activity was present in second-stage juveniles and in males, and the lowest in white and yellow females. Total FMRFamide-related peptide level per individual was highest in brown females, with 90% of the activity associated with the eggs. Peptide levels in these eggs and in second-stage juveniles were comparable and increased in adults, especially in females. Chromatographic analysis of FMRFamide-related peptide preparations from H. glycines juveniles, C. elegans, and P. redivivus revealed distinct qualitative differences between the infective plant parasite and the free-living nematodes.  相似文献   

2.
Some studies suggest that entomopathogenic nematodes (EPN) affect plant-parasitic nematode populations. Here, the effects of live and dead IJ of Heterorhabditis bacteriophora JPM4, H. baujardi LPP7, Steinernema feltiae SN and S. carpocapsae All were evaluated against eggs and J2 of the plant-parasitic nematode Meloidogyne mayaguensis. According to treatment, 100 IJ were applied with 350 eggs, 350 J2 or 175 eggs + 175 J2 to tomato plants. Bioassays were conducted in March to May and repeated in September to November 2005. Both experiments lasted 9 weeks, and the variable evaluated was number of galls per plant. When eggs were used for infections in the first trial, plants exhibited lower gall number compared to control when live and dead H. baujardi IJ and live S. feltiae IJ were added (9.7, 4.5, 7.3 and 85.7 galls, respectively). In the second trial, live S. feltiae and S. carpocapasae IJ influenced gall formation compared to control (14.33, 14.57 and 168.02 galls, respectively). When J2 were used for infections, plants with live H. baujardi IJ presented less galls when compared to control in both trials (38.3 and 355.7 galls in the first trial and 145.2 and 326.2 in the second one, respectively). Infection with a mixture of J2 and eggs resulted in fewer galls than when live S. feltiae IJ were present in both trials, compared to control (38.3 and 44.2 galls vs. 275.3 and 192.2 galls, respectively). We conclude that H. baujardi and S. feltiae apparently may be inhibiting egg hatching and J2 infection.  相似文献   

3.
Laboratory studies were conducted to evaluate effects of selected herbicides on hatching of free eggs of the soybean cyst nematode, Heterodera glycines. The herbicides used were Atrazine (atrazine), Basagran (bentazon), Bladex (cyanazine), Blazer (acifluorfen), Command (clomazone), Lasso (alachlor), Sonalan (ethalfluralin), and Treflan (trifluralin). Treatments comprised two concentrations of commercial herbicide formulations and deionized water and 3.14 mM zinc sulfate as negative and positive controls, respectively. Eggs were extracted from females and cysts, surface disinfested, and incubated in herbicide or control solutions at 25 ± 2 C in darkness. Hatched second-stage juveniles were counted every other day for 24 days. Hatching of H. glycines eggs in 50 and 500 μg/ml Blazer was 42 to 67% less than that in deionized water and 6l to 78% less than that in zinc sulfate solution. Zinc sulfate significantly increased hatching activity in 50 μg/ml but not 500 μg/ml Blazer. The other herbicides tested at various concentrations had no significant effect on egg hatching. The specific component of Blazer inhibiting egg hatching is unknown. Suppression of hatching by Blazer indicates that this postemergence soybean herbicide may have a potential role in managing H. glycines.  相似文献   

4.
Using standard hybridoma technology and hierarchical screening, monoclonal antibodies (MAbs) were obtained with specific reactivity against two developmental stages of Globodera pallida. The procedure was based on enzyme-linked immunosorbent assay (ELISA) with homogenates prepared from second-stage juveniles, young adult females, and potato roots. Hybridomas were formed by fusing myelomas with splenocytes derived from mice immunized with either infective juveniles or females of G. pallida. About 600 hybridoma lines were screened from the fusion involving the mouse immunized with juveniles. Two MAbs (LJMAbl &2) were identified with high reactivity toward second-stage juveniles but no reactivity with either potato roots or females of G. pallida. A total of 630 cell lines was screened from the corresponding fusion involving the spleen of a mouse receiving immunogens from adult female nematodes. One MAb (LFMAbl) was obtained with the required specificity against only adult female G. pallida. This work extends the application of monoclonal antibodies in nematology from valuable probes for research and species identification to recognition of developmental stages. These specific MAbs have potential value in plant breeding programs for screening for resistant lines unable to support nematode development.  相似文献   

5.
《Biological Control》2010,55(3):166-171
Sancassania polyphyllae (Acari: Acaridae) is associated with larvae of the white grub, Polyphylla fullo (Coleoptera: Scarabaeidae), and will feed on the infective juveniles of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae which are important biological control agents of soil insect pests. We conducted laboratory studies to determine the potential negative effects this mite species might have on biological control of soil insect pests. Our objectives in this study were to (1) determine the response of S. polyphyllae adult mites to a nematode-killed insects on agar, (2) evaluate the predation by mites on Steinernema feltiae infective juveniles from nematode-killed insects on agar and in soil, and (3) assess predation efficiency of the mite on the infective juveniles in the soil. On agar, we found (1) significantly more adult female mites near or on a nematode-killed Ceratitis capitata (Diptera: Tephritidae) larva than near or on the freeze-killed larva or a bamboo mimic suggesting that a chemical or an odor from the nematode-killed larva attracted the mites, and (2) 10 mites consumed 96% of infective juveniles that emerged from an insect cadaver. In soil with a nematode-killed insect, the average number of infective juveniles recovered was <30 when mites were present, whereas the average number of infective juveniles recovered was >375 when the mites were absent. When the infective juveniles alone were placed in different depths in relation to the mites in the soil column for 4 and 10 days, S. polyphyllae was not as efficient at finding the infective juveniles when they were separated from each other in the soil lending support to the idea that the mites were cueing in on the cadaver as a food resource. Our data suggest that emerging infective juveniles from an insect cadaver in the soil in the presence of S. polyphyllae can adversely affect biological control because of nematode consumption by the mites.  相似文献   

6.
In-vitro methods were developed to test fungi for production of metabolites affecting nematode egg hatch and mobility of second-stage juveniles. Separate assays were developed for two nematodes: root-knot nematode (Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines). For egg hatch to be successfully assayed, eggs must first be surface-disinfested to avoid the confounding effects of incidental microbial growth facilitated by the fungal culture medium. Sodium hypochlorite was more effective than chlorhexidine diacetate or formaldehyde solutions at surface-disinfesting soybean cyst nematode eggs from greenhouse cultures. Subsequent rinsing with sodium thiosulfate to remove residual chlorine from disinfested eggs did not improve either soybean cyst nematode hatch or juvenile mobility. Soybean cyst nematode hatch in all culture media was lower than in water. Sodium hypochlorite was also used to surface-disinfest root-knot nematode eggs. In contrast to soybean cyst nematode hatch, root-knot nematode hatch was higher in potato dextrose broth medium than in water. Broth of the fungus Fusarium equiseti inhibited root-knot nematode egg hatch and was investigated in more detail. Broth extract and its chemical fractions not only inhibited egg hatch but also immobilized second-stage juveniles that did hatch, confirming that the fungus secretes nematode-antagonistic metabolites.  相似文献   

7.
Meloidogyne partityla is a parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae (strain SN) and S. riobrave (strain 7–12) applied as infective juveniles and in infected host insects, as well as application of S. feltiae''s bacterial symbiont Xenorhabdus bovienii on M. partityla. In two separate greenhouse trials, the treatments were applied to pecan seedlings that were simultaneously infested with M. partityla eggs; controls received only water and M. partityla eggs. Additionally, all treatment applications were re-applied (without M. partityla eggs) two months later. Four months after initial treatment, plants were assessed for number of galls per root system, number of egg masses per root system, number of eggs per root system, number of eggs per egg mass, number of eggs per gram dry root weight, dry shoot weight, and final population density of M. partityla second-stage juveniles (J2). In the first trial, the number of egg masses per plant was lower in the S. riobrave-infected host treatment than in the control (by approximately 18%). In the second trial, dry root weight was higher in the S. feltiae-infected host treatment than in the control (approximately 80% increase). No other treatment effects were detected. The marginal and inconsistent effects observed in our experiments indicate that the treatments we applied are not sufficient for controlling M. partityla.  相似文献   

8.
Hatching studies with Heterodera glycines typically have been conducted with a mixture of egg-mass and encysted eggs. Laboratory research was conducted to compare hatching of H. glycines eggs from external egg masses with that of eggs extracted from within females and cysts (encysted eggs). Egg-mass eggs were collected by soaking infected soybean roots in 0.5% sodium hypochlorite, and encysted eggs were collected from females and cysts dislodged from the same roots with a stream of water. Eggs were incubated at 25 °C in deionized water, 3.0 mM ZnSO₄solution, or one of three synthetic H. glycines hatch inhibitors, mad hatched juveniles were counted every other day for 22 days. Samples of eggs collected at the beginning and end of all experiments were analyzed to determine extent of embryo development. Egg-mass eggs hatched more rapidly than encysted eggs during the first 16 days, but not thereafter. Throughout the experiments, hatch of egg-mass eggs in deionized water was greater than that of encysted eggs. From day 8 to day 22, egg-mass eggs were less sensitive than encysted eggs to the hatch inhibitor 2-(2''-carboxyethyl)-5-[carboxy(hydroxy)methylidenyl]cyclopentanone. A greater proportion of egg-mass eggs contained vermiform juveniles than did encysted eggs at the beginning of the experiments, but not at the end. Results indicated that H. glycines egg-mass and encysted eggs have different hatching behaviors that cannot be explained entirely by differences in embryological development.  相似文献   

9.
Adult crickets (Gryllus bimaculatus) were maintained under a 12-h light:12-h dark cycle (LD 12:12). After oviposition, their eggs were incubated under different lighting regimens at 23 degrees C, and temporal profiles of egg hatching were examined. When the eggs were incubated in LD 12:12 or in DL 12:12 with a phase difference of 12h from LD 12:12, throughout embryogenesis, 88% to 97% of hatching occurred within 3 h of the dark-light transition on days 17 and 18 of embryogenesis; the phases of the egg-hatching rhythms in the LD 12:12 and DL 12:12 groups differed by about 12 h. In eggs incubated in constant darkness (DD) throughout embryogenesis, a circadian (about 24 h) rhythm of hatching was found, and the phase of the rhythm was similar to that seen in eggs incubated in LD 12:12, but not DL 12:12, throughout embryogenesis. When eggs that had been incubated in DD after oviposition were transferred to DL 12:12 in the middle or later stages of embryogenesis and were returned to DD after three cycles of DL 12:12, the rhythm of hatching synchronized (entrained) to DL 12:12. However, when eggs in the earlier stages of embryogenesis were transferred from DD to DL 12:12 and returned to DD after three cycles, 52% to 94% of hatching did not entrain to DL 12:12. To determine whether photoperiodic conditions to which the parents had been exposed influenced the timing of egg hatching, adult crickets were maintained in DL 12:12, and their eggs were incubated in LD 12:12, DL 12:12, or DD throughout embryogenesis. The egg-hatching rhythm was also found in the eggs incubated under these three lighting regimens. In DD, the phase of the rhythm was similar to that seen in eggs incubated in DL 12:12, not LD 12:12, throughout embryogenesis. The results indicate that in the cricket, the timing of egg hatching is under circadian control and that the circadian rhythm of hatching entrains to 24-h light:dark cycles, but only if the light:dark cycles are imposed midway through embryogenesis. Therefore, by midembryogenesis, a circadian clock has been formed in the cricket, and this is entrainable to light:dark cycles. In addition, the photoperiodic conditions to which the parents (probably the mothers) have been exposed influence the timing of hatching, suggesting that maternal factors may regulate the timing of egg hatching.  相似文献   

10.
Clones of two partially resistant and two susceptible white clover, Trifolium repens, genotypes were exposed to eggs of Heterodera trifolii and nematode development in stained roots measured at 2, 4, 7, 11, 18, 23, and 37 days after inoculation. The differences in development between nematode populations in resistant and susceptible genotypes showed that resistance operated after infection during feeding and development. At 7 days after inoculation, counts of second-stage juveniles did not differ between genotypes, whereas at 37 days more adults had developed in the susceptible than in the resistant genotypes. In a separate experiment, cysts hosted by susceptible genotypes were larger and contained more eggs than those on resistant genotypes so that the product of the values for cysts per plant and for eggs per cyst resulted in a more sensitive measure of resistance than from using cysts per plant alone.  相似文献   

11.
Smales L. R. The life history of Labiostrongylus eugenii, a nematode parasite of the Kangaroo Island Wallaby (Macropus eugenii): development and hatching of the egg and the free living stages. International Journal for Parasitology7: 449–456. Labiostrongylus eugenii (Trichonematidae) occurs in the stomach of the Kangaroo Island Wallaby. Egg morphology is similar to that of other strongyloids. When incubated at 25°C embryogenesis is completed in about 30 h. An incomplete moult occurs within the egg, and larvae hatch at a sheathed second-stage 4312–8312 h later. Development occurred at all temperatures between 2° and 37°C with an optimum about 25°C and an upper limit near 37°C. The hatching process is very rapid, taking about 2 min. It is signalled by increased larval activity followed by a change in shell permeability. The larva hatches at that pole of the shell which has become plastic.The sheathed second-stage larva measures 659.50 ± 22.54 μm by 27.98 ± 1.22 μm. Its internal structures are concealed by a mass of opaque granules which were demonstrated as neutral lipid by oil red O staining. A second incomplete moult at 3–4 days results in a doubly sheathed infective larva from which the lipid gradually disappears. The mouth never appears patent and the larvae neither feed nor grow but rather decrease in size with age. Optimal temperatures for larvae range between 15°–25°C with 37°C about the upper limit. The significance of this developmental pattern is discussed.  相似文献   

12.
The occurrence and distribution of several lectin binding sites on the outer surfaces of eggs, preparasitic second-stage juveniles (J2), parasitic second-stage juveniles (PJ2), females, and males of two tylenchid nematodes, Anguina tritici and Meloidogyne incognita race 3, were compared. In both species, a greater variety of lectins bound to the eggs than to other life stages; lectin binding to eggs was also more intense than it was to other life stages. Species-specific differences also occurred. More lectins bound to the amphids or amphidial secretions of M. incognita J2 than to the amphids or amphidial secretions of A. tritici J2. Lectins also bound to the amphids or amphidial secretions of adult male and female A. tritici, but binding to the cuticle occurred only at the head and tail and was not consistent in all specimens. Canavalia ensiformis and Ulex europaeus lectins bound specifically to the outer cuticle of M. incognita. Several other lectins bound nonspecifically. Oxidation of the cuticle with periodate under mild conditions, as well as pretreatment of the nematodes with lipase, markedly increased the binding of lectins to the cuticle of A. tritici J2 but not, in most cases, to M. incognita J2 or eggs of either species.  相似文献   

13.
The sedentary semi-endoparasitic nematode Rotylenchulus reniformis, the reniform nematode, is a serious pest of cotton and soybean in the United States. In recent years, interest in the molecular biology of the interaction between R. reniformis and its plant hosts has increased; however, the unusual life cycle of R. reniformis presents a unique set of challenges to researchers who wish to study the developmental expression of a particular nematode gene or evaluate life stage–specific effects of a specific treatment such as RNA-interference or a potential nematicide. In this report, we describe a simple method to collect R. reniformis juvenile and vermiform adult life stages under in vitro conditions and a second method to collect viable parasitic sedentary females from host plant roots. Rotylenchulus reniformis eggs were hatched over a Baermann funnel and the resultant second-stage juveniles incubated in petri plates containing sterile water at 30°C. Nematode development was monitored through the appearance of fourth-stage juveniles and specific time-points at which each developmental stage predominated were determined. Viable parasitic sedentary females were collected from infected roots using a second method that combined blending, sieving, and sucrose flotation. Rotylenchulus reniformis life stages collected with these methods can be used for nucleic acid or protein extraction or other experimental purposes that rely on life stage–specific data.  相似文献   

14.
Filtrates of three isolates of the nematophagous fungus Verticillium leptobactrum were evaluated for their nematicidal activity against the root-knot nematode Meloidogyne incognita. The filtrates inhibited egg hatching, with maximum toxicity observed for isolate HR21 at 50% (v:v) dilution, after 7 days exposure. Filtrates also inactivated second-stage juveniles (J2) at 10-50% dilutions. A scanning electron microscopy study of treated eggs showed severe alterations caused by the filtrate of isolate HR43 on M. incognita eggs, which appeared collapsed and not viable, suggesting the production of chitin-degrading enzymes or other active compounds.  相似文献   

15.
The plant-parasitic cyst nematode Heterodera glycines requires a host plant to complete its life cycle, which involves hatching of infective juveniles that parasitize through root entry. A laboratory population of H. glycines grown on soybean, Glycine max, undergoes a sharp increase in maturity between 5 and 6 weeks in culture, as measured by the proportion of eggs containing well developed pre-hatch juveniles (late development eggs) versus eggs without visible juveniles (early development eggs). The median percent of eggs classified as late development, representing all samples taken from 4 to 7 weeks in culture, was 61%. For all samples taken up to 5 weeks, 80% scored below the median. In samples taken after 5 weeks, 15% scored below the median. This shift in population maturity was accompanied by a significant increase (P < 0.01) in the number of hatched juveniles present in each sample. There was also a significant increase (P < 0.02) in amount of FaRP-like peptide detected by specific ELISA. Total FaRP levels increased from 0.18 +/- 0.07 fMol FLRFamide equivalents per ng protein in early development eggs to 0.40 +/- 0.17 in late development eggs. The level remained high in hatched juveniles. HPLC/ELISA detected as many as nine potential FaRPs in H. glycines, two of which were specifically increased (P < 0.005) in hatched juveniles. The association of FaRPs with maturing eggs and the possible involvement of these neuropeptides with juvenile hatching and motility are discussed.  相似文献   

16.
Hurley L. C. and Sommerville R. I. 1982. Reversible inhibition of hatching of infective eggs of Ascaris suum (Nematoda). International Journal for Parasitology12: 463–465. Dilute solutions of an oxidising agent, iodine, reversibly inhibit hatching of infective eggs of Ascaris suum. The capacity to hatch is restored by exposure to reducing agent, hydrogen sulphide. These observations add to known similarities between hatching of infective eggs and exsheathment of infective larvae. It is proposed that the regulatory mechanisms for both processes are similar.  相似文献   

17.
The rate of recovery of Pratylenchus brachyurus from cotton roots was enhanced when the tissue was incubated in solutions containing 10 ppm ethoxyethyl mercuric chloride, 50 ppm dihydrostreptomycin sulfate, 50, 100, or 1,000 ppm diisobutylphenoxethyl dimethyl benzyl ammonium chloride, or mixtures of these compounds. Incubation in 10 or 100 ppm zinc sulfate, zinc chloride, or magnesium chloride also enhanced the rate of recovery. Incubation solutions containing 1 or 1,000 ppm zinc chloride or magnesium chloride had no influence on this phenomenon, whereas, 10,000 ppm zinc sulfate, zinc chloride, or magnesium chloride retarded the rate of recovery. A t all incubation intervals during the first 21 days after the roots were removed from soil, the P. brachyurus population consisted of approximately 25% second-stage juveniles, 44% third and fourth-stage juveniles, and 31% females. At least 88% of the second-stage juveniles and 51% of the third and fourth-stage juveniles passed through a single 325-mesh sieve, whereas, 84% of the females collected were retained on a sieve of this mesh.  相似文献   

18.
Fluid collected from hatching eggs of Haemonchus contortus contained a lipase which hydrolysed 2-naphthyl laurate (about 0·7 μmol naphthol freed /h/106 eggs). The fluid also hydrolysed l-leucinamide (about 2·3 μmol leucine freed/h/106 eggs). The fluid when added to normal or heated eggs caused ‘hatching’. ‘Hatching’ also occurred in exsheathing fluid from infective juveniles and in a preparation of pancreatic lipase containing leucine aminopeptidase. A purified mammalian leucine aminopeptidase in combination with several different lipases did not attack egg shells.The ‘spontaneous’ hatching of eggs of H. contortus was strongly inhibited by 1,10-phenanthroline, 10?3M, and this inhibition was reversed by Zn2+. However, the inhibition of ‘hatching’ of eggs in externally applied hatching fluid, or the hydrolysis of leucinamide in hatching fluid was generally less marked.  相似文献   

19.
Bacillus firmus, commercial WP formulation (BioNem) was evaluated against the root-knot nematode Meloidogyne incognita in a laboratory, greenhouse and under field conditions on tomato plants. In the laboratory tests, an aqueous suspension of BioNem at 0.5%, 1%, 1.5% and 2% concentration reduced egg hatching from 98% to 100%, 24-days after treatment. Treatment of second-stage juveniles with 2.5% and 3% concentration of BioNem, caused 100% inhibition of mobility, 24 h after treatment. In the green house trials, BioNem applied at 8 g/pot (1200 cc soil) planted with a tomato seedlings reduced gall formation by 91%, final nematode populations by 76% and the number of eggs by 45%. Consequently, plant height and biomass was increased by 71% and 50%, respectively, compared to the untreated control, 50-days after treatment application. Application of BioNem at 16 g/pot was phytotoxic to plants. In the field trails, BioNem applied at 200 and 400 kg ha−1 was effective in reducing the number of galls (75-84%), and increased shoot height (29-31%) and weight (20-24%) over the untreated control, 45-days after treatment. Our results indicate that B. firmus is a promising microorganism for the biological control of M. incognita in tomato pots.  相似文献   

20.
White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号