首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theranostic agents are emerging multifunctional molecules capable of simultaneous therapy and diagnosis of diseases. We found that platinum(II)–gadolinium(III) complexes with the formula [{Pt(NH3)2Cl}2GdL](NO3)2 possess such properties. The Gd center is stable in solution and the cytoplasm, whereas the Pt centers undergo ligand substitution in cancer cells. The Pt units interact with DNA and significantly promote the cellular uptake of Gd complexes. The cytotoxicity of the Pt–Gd complexes is comparable to that of cisplatin at high concentrations (≥0.1 mM ), and their proton relaxivity is higher than that of the commercial magnetic resonance imaging (MRI) contrast agent Gd–DTPA. T1‐weighted MRI on B6 mice demonstrated that these complexes can reveal the accumulation of platinum drugs in vivo. Their cytotoxicity and imaging capabilities make the Pt–Gd complexes promising theranostic agents for cancer treatment.  相似文献   

2.
A robust dithiocarbamate tether allows novel gadolinium units based on DOTAGA (q=1) to be attached to the surface of gold nanoparticles (2.6–4.1 nm diameter) along with functional units offering biocompatibility, targeting and photodynamic therapy. A dramatic increase in relaxivity (r1) per Gd unit from 5.01 mm −1 s−1 in unbound form to 31.68 mm −1 s−1 (10 MHz, 37 °C) is observed when immobilised on the surface due to restricted rotation and enhanced rigidity of the Gd complex on the nanoparticle surface. The single-step synthetic route provides a straightforward and versatile way of preparing multifunctional gold nanoparticles, including examples with conjugated zinc–tetraphenylporphyrin photosensitizers. The lack of toxicity of these materials (MTT assays) is transformed on irradiation of HeLa cells for 30 minutes (PDT), leading to 75 % cell death. In addition to passive targeting, the inclusion of units capable of actively targeting overexpressed folate receptors illustrates the potential of these assemblies as targeted theranostic agents.  相似文献   

3.
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields.  相似文献   

4.
A novel MRI contrast agent, hyaluronic acid gadolinium complex (HA‐Gd‐DTPA) nanospheres, is prepared by the synthesis of hyaluronic acid gadolinium complexes and their assembly. The physicochemical properties are characterized, and the lymphatic targeting in vitro and in vivo are also evaluated. The results show that the HA‐Gd‐DTPA nanospheres with suitable and stable physicochemical properties could be used for in vivo lymphatic targeting studies. Furthermore, the HA‐Gd‐DTPA nanospheres have obviously higher relaxation efficiency and MRI contrast between blood vessel and lymph vessel in rabbit than that of Magnevist. Thus, the novel MRI contrast agent can be taken up selectively by lymphatic system and used as a potential MRI contrast agents in lymphatic system.  相似文献   

5.
The redox microenvironment within a cell graft can be considered as an indicator to assess whether the graft is metabolically active or hypoxic. We present a redox‐responsive MRI probe based on porous silica microparticles whose surface has been decorated with a Gd‐chelate through a disulphide bridge. Such microparticles are designed to be interspersed with therapeutic cells within a biocompatible hydrogel. The onset of reducing conditions within the hydrogel is paralleled by an increased clearance of Gd, that can be detected by MRI.  相似文献   

6.
During autophagy, the intracellular components are captured in autophagosomes and delivered to lysosomes for degradation and recycling. Changes in lysosomal trafficking and contents are key events in the regulation of autophagy, which has been implicated in many physiological and pathological processes. In this work, two iridium(III) complexes ( LysoIr1 and LysoIr2 ) are developed as theranostic agents to monitor autophagic lysosomes. These complexes display lysosome‐activated phosphorescence and can specifically label lysosomes with high photostability. Simultaneously, they can induce autophagy potently without initiating an apoptosis response. We demonstrate that LysoIr2 can effectively implement two functions, namely autophagy induction and lysosomal tracking, in the visualization of autophagosomal–lysosomal fusion. More importantly, they display strong two‐photon excited fluorescence (TPEF), which is favorable for live cell imaging and in vivo applications.  相似文献   

7.
Two‐photon photodynamic therapy is a promising therapeutic method which requires the development of sensitizers with efficient two‐photon absorption and singlet‐oxygen generation. Reported here are two new diketopyrrolopyrrole‐porphyrin conjugates as robust two‐photon absorbing dyes with high two‐photon absorption cross‐sections within the therapeutic window. Furthermore, for the first time the singlet‐oxygen generation efficiency of diketopyrrolopyrrole‐containing systems is investigated. A preliminary study on cell culture showed efficient two‐photon induced phototoxicity.  相似文献   

8.
Microcapsules obtained by layer‐by‐layer assembly provide a good platform for biological analysis owing to their component diversity, multiple binding sites, and controllable wall thickness. Herein, different assembly species were obtained from two‐photon dyes and traditional photosensitizers, and further assembled into microcapsules. Fluorescence resonance energy transfer (FRET) was shown to occur between the two‐photon dyes and photosensitizers. Confocal laser scanning microscopy (CLSM) with one‐ and two‐photon lasers, fluorescence lifetime imaging microscopy (FLIM), and time‐resolved fluorescence spectroscopy were used to analyze the FRET effects in the microcapsules. The FRET efficiency could easily be controlled through changing the assembly sequence. Furthermore, the capsules are phototoxic upon one‐ or two‐photon excitation. These materials are thus expected to be applicable in two‐photon‐activated photodynamic therapy for deep‐tissue treatment.  相似文献   

9.
10.
We present two novel octadentate cyclen-based ligands bearing one (L1) or two (L2) phenylacetamide pendants with two CF3 groups either at positions 3 and 5 (L1) or 4 (L2). The corresponding Gd3+ complexes possess one coordinated water molecule, as confirmed by luminescence lifetime measurements on the EuIII and TbIII analogues. A detailed 1H and 17O relaxometric characterization has revealed the parameters that govern the relaxivities of these complexes. The water-exchange rate of the mono-amide derivative GdL1 (kex298=1.52×106 s−1) is faster than that determined for the bis-amide complex GdL2 (kex298=0.73×106 s−1). 1H and 19F NMR studies have indicated that the complexes are present in solution almost exclusively as the square-antiprismatic (SAP) isomers. 19F NMR relaxation studies indicated Gd ⋅⋅⋅ F distances of 7.4±0.1 and 9.1±0.1 Å for GdL1 and GdL2, respectively. Phantom MRI studies revealed the favorable properties of GdL2 as a dual 1H/19F magnetic resonance imaging (MRI) probe, whereas the shorter Gd ⋅⋅⋅ F distance of GdL1 reduces the signal-to-noise ratio due to the very short transverse relaxation time of the 19F NMR signal.  相似文献   

11.
Gadolinium‐based contrast agents (GBCAs) are used to provide diagnostic information in clinical magnetic resonance (MR) examinations. Gadolinium (Gd) has been detected in the brain, bone and skin of patients, months and years following GBCA administration, raising concerns about long term toxicity. Despite increased scrutiny, the concentration, chemical form and fate of the retained gadolinium species remain unknown. Importantly, the whole body biodistribution and organ clearance of GBCAs is poorly understood in humans. Gadolinium lacks suitable isotopes for nuclear imaging. We demonstrate that the yttrium‐86 isotope can be used as a gadolinium surrogate. We show that Gd and their analogous Y complexes have similar properties both in solution and in vivo, and that yttrium‐86 PET can be used to track the biodistribution of GBCAs over a two‐day period.  相似文献   

12.
Homodinuclear lanthanide complexes (Ln=La, Eu, Gd, Tb, Yb and Lu) derived from a bis‐macrocyclic ligand featuring two 2,2′,2′′‐(1,4,7,10‐tetraazacyclododecane‐1,4,7‐triyl)triacetic acid chelating sites linked by a 2,6‐bis(pyrazol‐1‐yl)pyridine spacer (H2L3) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the EuIII and TbIII complexes indicate the presence of one inner‐sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (?=0.01 for [Eu2(L3)] and 0.50 for [Tb2(L3)] in 0.01 M TRIS/HCl, pH 7.4; TRIS=tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L3)] are characteristic of slowly tumbling systems, showing a low‐field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous GdIII complex containing a 4,4′‐dimethyl‐2,2′‐bipyridyl spacer ([Gd2(L1)]). The relaxivity of [Gd2(L3)] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM ?1 s?1. The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L1)] and [Gd2(L3)], respectively. TEM images of [Gd2(L3)] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.  相似文献   

13.
14.
15.
A highly rigid open‐chain octadentate ligand (H4cddadpa) containing a diaminocylohexane unit to replace the ethylenediamine bridge of 6,6′‐[(ethane‐1,2 diylbis{(carboxymethyl)azanediyl})bis(methylene)]dipicolinic acid (H4octapa) was synthesized. This structural modification improves the thermodynamic stability of the Gd3+ complex slightly (log KGdL=20.68 vs. 20.23 for [Gd(octapa)]?) while other MRI‐relevant parameters remain unaffected (one coordinated water molecule; relaxivity r1=5.73 mm ?1 s?1 at 20 MHz and 295 K). Kinetic inertness is improved by the rigidifying effect of the diaminocylohexane unit in the ligand skeleton (half‐life of dissociation for physiological conditions is 6 orders of magnitude higher for [Gd(cddadpa)]? (t1/2=1.49×105 h) than for [Gd(octapa)]?. The kinetic inertness of this novel chelate is superior by 2–3 orders of magnitude compared to non‐macrocyclic MRI contrast agents approved for clinical use.  相似文献   

16.
17.
Three new magnetic resonance imaging probes that target glutamine transporters have been synthesized. They consist of a Gd‐DOTA‐monoamide moiety (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid) linked through a six carbon atom chain to a vector represented by a glutamine residue bound through α‐carboxylic, γ‐carboxamidic, or α‐amino functionalities. Their uptake by HTC (rat hepatocarcinoma) and healthy rat hepatocytes has shown that the system containing the glutamine vector bound through the α‐carboxylic group displays a markedly higher affinity for tumor cells. The observed behavior is rationalized in terms of the exploitation of an additional glutamine transporter active in hepatic tumor cells.  相似文献   

18.
Two kinds of inorganic gadolinium(III)‐hydroxy “ladders”, [2×n] and [3×n], were successfully trapped in succinate (suc) coordination polymers, [Gd2(OH)2(suc)2(H2O)]n ? 2n H2O ( 1 ) and [Gd6(OH)8(suc)5(H2O)2]n ? 4n H2O ( 2 ), respectively. Such coordination polymers could be regarded as alternating inorganic–organic hybrid materials with relatively high density. Magnetic and heat capacity studies reveal a large cryogenic magnetocaloric effect (MCE) in both compounds, namely (ΔH=70 kG) 42.8 J kg?1 K?1 for complex 1 and 48.0 J kg?1 K?1 for complex 2 . The effect of the high density is evident, which gives very large volumetric MCEs up to 120 and 144 mJ cm?3 K?1 for complexes 1 and 2 , respectively.  相似文献   

19.
Gadolinium(III)‐based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号