首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modified ultra-porous ZIF-8 particles were used to prepare novel ZIF-8/Pebax 1657 mixed matrix membranes (MMMs) on PES support for separation of CO2 from CH4 using spin coating method. TEM and SEM were used to characterize modified ZIF-8 particles. SEM was also used to investigate the morphology of synthesized MMMs. The MMMs with thinner selective layer showed higher CO2 permeability and lower CO2/CH4 selectivity in permeation tests compared to MMMs with thicker selective layer. The plasticization was recognized as the main reason for rise in CO2 permeability and drop in CO2/CH4 selectivity of thinner MMMs. The gas sorption results showed that the high permeability of CO2 in MMMs is mainly due to the high solubility of this gas in MMMs, leading to high CO2/CH4 solubility selectivity for MMMs. The fractional free volume and void volume fraction of MMMs increased as the thickness of membrane decreased. Applying higher mixed feed pressures and permeation tests temperatures resulted in increase in CO2 permeability and decrease in CO2/CH4 selectivity. At highest testing temperature (60 °C), the CO2 permeability of synthesized MMMs with thinner selective layer remarkably increased.  相似文献   

2.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

3.
In this paper, the effect of testing temperature on the performance of fixed carrier membrane for CO2 separation were studied. The blend composite membranes were developed respectively with a blend of PEI-PVA (polyetheleneimine-polyvinyl alcohol) as separation layer and PS (polysulfone) ultrafiltration membranes as the substrates. The permselectivity of the membranes was measured with CO2/CH4 mixed gas. The effect of testing temperature on membrane separation performance was investigated. The results showed that both the permeances of CO2 and CH4 decreased with the increase of temperature, and the permeances decreased more quickly under low pressure than those under high pressure. At the feed pressure of 0.11 MPa, the CO2/ CH4 selectivity of PEI-PVA/PS blend composite membrane reduced along with temperature increment. Under the feed pressure of 0.21 MPa, as well as 1.11 MPa, the selectivity decreased with the increase of temperature.  相似文献   

4.
Copolymers based on glassy and rubbery units have been developed to take advantage of both domains to enhance solubility and diffusivity. In this study, a series of gas separation membranes from polysulfone (PSF) containing ethylene glycol were synthesized via nucleophilic substitution polycondensation. The structures of copolymers were characterized by nuclear magnetic resonance spectra, Fourier transform infrared spectra, and thermal gravity analysis. The permeability and selectivity of the membranes were studied at different temperatures of 25–55 °C and pressures of 0.5–1.5 atm using single gases CO2 and CH4. Gas permeation measurements showed that copolymers with different contents of poly(ethylene glycol) exhibited different separation performances. For example, the membrane from PSF-PEG2000-20 containing 20 wt% poly(ethylene glycol) showed better performance in terms of ideal selectivity over the other seven copolymer membranes. The highest ideal CO2/CH4 selectivity was 43.0 with CO2 permeability of 6.4 Barrer at 1.5 atm and 25 °C.  相似文献   

5.
A parametric study of pyrolysis and steam gasification of rice straw (RS) was performed to investigate the effect of the presence of K2CO3 on the behavior of gas evolution, gas component distribution, pyrolysis/gasification reactivity, the quality and volume of synthetic gas. During pyrolysis, with the increase in K2CO3 content in RS (i) the instantaneous CO2 concentration was increased while CO concentration was relatively stable; (ii) the yield of CO2 and H2 increased on the cost of CH4. During steam gasification of RS, with the increase in K2CO3 content in RS (i) the instantaneous concentration of CO2 and H2 increased while instantaneous concentration of CO and CH4 decreased; (ii) the yield of CO2 and H2 production and total yield increased; and (iii) yield of CO and CH4 production followed the order: 9% K2CO3 RS<6% K2CO3 RS<raw RS<3% K2CO3 RS<water-leached RS. Water-leached RS showed the highest pyrolysis reactivity, while stream gasification reactivity was proportional to K2CO3 content in RS. The results of this study reveal that the presence of K2CO3 during pyrolysis and steam gasification of RS effectively improves production of H2 rich gas.  相似文献   

6.
A series of blend membranes made from the rubbery polyether block amide (Pebax®1657) and a glassy polymer, polyethersulfone (PES) or Matrimid 5218, were fabricated by solution casting with different ratios (10–40 %), in order to combine high permeability of the former with high selectivity of the latter polymer for CO2/CH4 gas separation. The membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and stress–strain tests. These blend membranes showed two distinct T g s, indicating their immiscible nature as confirmed by SEM images. However, weak intermolecular interaction between polymers, as illustrated by the FTIR results, corresponds to some degree to their compatibility and improved mechanical strength, compared to the pure Pebax®. TGA analysis revealed that addition of glassy polymer improved membranes’ thermal stability. Effect of feed pressure on membrane separation, investigated by three different pressures (4, 8, and 12 bar), indicated increased permeability for higher pressures for both CO2 and CH4. Gas separation tests also pointed to improved separation properties of the blend membranes compared to those of the neat polymers, prepared the same way.  相似文献   

7.
One of the effective techniques for improving separation properties of polymeric membranes is incorporation of suitable nanoparticles into their matrices. This study presents the preparation of three types of nanocomposite membranes comprising three grades of poly (ether-block-amide) (Pebax 1074, Pebax 1657 and Pebax 2533) and modified multi-walled carbon nanotubes (MWCNTs) with different loadings (1, 1.5, 2 and 2.5 wt%). The prepared membranes were characterized by field emission scanning electron microscopy (FESEM), attenuated total reflection-Fourier transfer infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Permeation of CO2 and CH4 gases through the prepared membranes was measured at the pressure range of 2-8 bars and 25 °C. The results showed that the incorporation of MWCNTs into the polymers matrices improves CO2/CH4 selectivity. Further, Pebax 1074/MWCNT nanocomposite membrane exhibits better performance for CO2/CH4 separation compared to the neat Pebax and the two other nanocomposite membranes.  相似文献   

8.
Asymmetric Flat sheet polysulfone-polyimide (PSF-PI) blended polymeric membranes (with PI content from 5–20%) have been fabricated following phase inversion technique. The membranes have been thoroughly characterized by the measurement of porosity, mechanical properties and also by SEM, FTIR and DSC analyses. With the increase in the PI content, the mechanical properties of the membranes, like Young’s modulus, tensile strength and elongation at break, increased. SEM investigations revealed that the surfaces of fabricated blended membranes possessed adequate homogeneity and their cross-sections showed non-porous top and diminutive porous substructure. From DSC analyses it has been observed that different compositions of the blended membranes exhibited single glass transition temperatures, implying proper compatibility of the polymers. The permeance of CO2 and CH4 through the membrane increased with the increase in PI content and it gradually decreased with the increase in the feed pressure in the range of 2–10 bar. Under the present investigation, the membrane with 20% PI content exhibited the maximum selectivity for the separation of CO2/CH4 gas mixes.  相似文献   

9.
Fixed‐carrier composite hollow‐fiber membranes were prepared with polyvinylamine (PVAm) as the selective layer and a polysulfone ultrafiltration membrane as the substrate. The effects of the PVAm concentration in the coating solution, the number of coatings, and the crosslinking of glutaraldehyde and sulfuric acid on the CO2 permeation rate and CO2/CH4 selectivity of the composite membranes were investigated. As the PVAm concentration and the number of coatings increased, the CO2/CH4 selectivity increased, but the CO2 permeation rate decreased. The membranes crosslinked by glutaraldehyde or sulfuric acid possessed higher CO2/CH4 selectivities but lower CO2 permeation rates. For the pure feed gas, a composite hollow‐fiber membrane coated with a 2 wt % PVAm solution two times and then crosslinked with glutaraldehyde and an acid solution in sequence had a CO2 permeation rate of 3.99 × 10?6 cm3 cm?2 s?1 cmHg?1 and an ideal CO2/CH4 selectivity of 206 at a feed gas pressure of 96 cmHg and 298 K. The effect of time on the performance of the membranes was also investigated. The performance stability of the membranes was good during 6 days of testing. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1885–1891, 2006  相似文献   

10.
Aluminum terephthalate, MIL-53(Al), metal–organic framework synthesized hydrothermally and purified by solvent extraction method was used as an adsorbent for gas adsorption studies. The synthesized MIL-53(Al) was characterized by powder X-Ray diffraction analysis, surface area measurement using N2 adsorption–desorption at 77 K, FTIR spectroscopy and thermo gravimetric analysis. Adsorption isotherms of CO2, CH4, CO, N2, O2 and Ar were measured at 288 and 303 K. The absolute adsorption capacity was found in the order CO2>CH4>CO>N2>Ar>O2. Henry’s constants, heat of adsorption in the low pressure region and adsorption selectivities for the adsorbate gases were calculated from their adsorption isotherms. The high selectivity and low heat of adsorption for CO2 suggests that MIL-53(Al) is a potential adsorbent material for the separation of CO2 from gas mixtures. The high selectivity for CH4 over O2 and its low heat of adsorption suggests that MIL-53(Al) could also be a compatible adsorbent for the separation of methane from methane–oxygen gas mixtures.  相似文献   

11.
A low-cost activated carbon (AC) was produced from the broom sorghum stalk using KOH as the chemical activating agent, and then the surface of AC was functionalized with diethanolamine to enhance CO2/CH4 selectivity. Characteristics of pristine and DEA-functionalized ACs were determined through different analyses such as Boehm’s method, BET, FT-IR, SEM, and TGA. The adsorption behavior of pure carbon dioxide and pure methane on these adsorbents was investigated in a temperature range of 288-308 K and pressure range of 0-25 bar using an apparatus based on a volumetric method. Results indicated that amine functionalization significantly improved the selectivity of CO2/CH4. The enhancement of CO2 ideal adsorption selectivity over CH4 from 1.51 for the pristine AC to 5.75 for the AC-DEA was attributed to adsorbate-adsorbent chemical interaction. The present DEA-functionalized AC adsorbent can be a good candidate for applications in natural gas and landfill gas purifications.  相似文献   

12.
The main purpose of the study was to develop a model using ASPEN and Excel simulation method to establish optimum CO2 separation process utilizing hollow fiber membrane modules to treat exhaust gas from LNG combustion. During the simulation, optimum conditions of each CO2 separation scenario were determined while operating parameters of CO2 separation process were varied. The characteristics of hollow fibers membrane were assigned as 60 GPU of permeability and 25 of selectivity for the simulation. The simulation results illustrated that 4 stage connection of membrane module is required in order to achieve over 99% of CO2 purity and 90% of recovery rate. The resulted optimum design and operation parameters throughout the simulation were also correlated with the experimental data from the actual CO2 separation facility which has a capacity of 1,000 Nm3/day located in the Korea Research Institute of Chemical Technology. Throughout the simulation, the operating parameters of minimum energy consumption were evaluated. Economic analysis of pilot scale of CO2 separation plant was done with the comparison of energy cost of CO2 recovery and equipment cost of the plant based on the simulation model. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

13.
Adsorption of pure carbon dioxide and methane was examined on activated carbon prepared from pine cone by chemical activation with H3PO4 to determine the potential for the separation of CO2 from CH4. The prepared adsorbent was characterized by N2 adsorption-desorption, elemental analysis, FTIR, SEM and TEM. The equilibrium adsorption of CO2 and CH4 on AC was determined at 298, 308 and 318 K and pressure range of 1–16 bar. The experimental data of both gases were analyzed using Langmuir and Freundlich models. For CO2, the Langmuir isotherm presented a perfect fit, whereas the isotherm of CH4 was well described by Freundlich model. The selectivity of CO2 over CH4 by AC (CO2: CH4=50: 50, 298K, 5 bar), predicted by ideal adsorbed solution theory (IAST) model, was achieved at 1.68. These data demonstrated that pine cone-based AC prepared in this study can be successfully used in separation of CO2 from CH4.  相似文献   

14.
Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002  相似文献   

15.
Blend membranes were prepared by incorporating two types of polyethylene glycol (PEG) (molecular masses of 400 and 1000 g mol?1) into three grades of poly(ether-block-amide) (PEBAX), namely PEBAX 1074, PEBAX 1657, and PEBAX 2533. The PEGs, which were used as blending agents, were employed at mass fractions ranging from 10 to 40 wt.% based on the mass of PEBAX. The gas separation performance of each neat or blend membrane, comprising its CO2 and CH4 permeabilities and its ideal CO2/CH4 selectivity, was studied at room temperature (25 °C) and at pressures of 2–8 bar. X-ray diffraction (XRD) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analyses were used to determine the crystallinities of and the chemical bonds in the prepared membranes, respectively. Scanning electron microscopy (SEM) was also utilized to observe the morphologies of the membranes. The results obtained from experimental investigations showed that the incorporation of low molecular mass PEG significantly increased the permeability but only slightly affected the ideal CO2/CH4 selectivity, while the incorporation of high molecular mass PEG decreased the permeability considerably but sharply increased the ideal CO2/CH4 selectivity. This behavior intensified as the polyether content of the PEBAX was decreased.
Graphical abstract
  相似文献   

16.
The high fractional free volume (FFV) endowed polymers of intrinsic microporosity (PIMs) with high gas permeability but low selectivity. Herein, an intermediate temperature range was deliberately utilized to tune PIM-1 membrane microstructure in nitrogen atmosphere to enhance gas separation performance. During intermediate thermal manipulation, the synergistic effects of thermal-induced cross-linking and decomposition on PIM-1 membranes have optimized the micropores for significantly increasing membrane molecular-sieving ability with the boosted selectivity of 350 (H2/N2), 1,472 (H2/CH4), 3,774 (H2/C3H8), and 197 (CO2/CH4) respectively, with the H2 permeability of 234 Barrer, correspondingly, surpassing the “Robeson's Upper Bound”. The facile strategy simultaneously utilizing the thermal-induced cross-linking and decomposition, might provide a new platform to develop the high-performance membranes for highly-efficient hydrogen purification and CO2 separations.  相似文献   

17.
A comparative study of the influence of CO2 and H2O on both lean and rich CH4-air laminar flames is performed. Six premixed flames are stabilized on a flat flame burner at atmospheric pressure: lean (with the equivalence ratio maintained constant at ? = 0.7) and rich (with the equivalence ratio maintained constant at ? = 1.4) CH4-air, CH4-CO2-air, and CH4-H2O-air flames. These flames are studied experimentally and numerically. The [CO2]/[CH4] and [H2O]/[CH4] ratios are kept equal to 0.4 for both flames series. Species mole fraction profiles are measured by gas chromatography and Fourier transform infrared spectroscopy analyses of gas samples withdrawn along the vertical axis by a quartz microprobe. Flames structures are computed by using the ChemkinII/Premix code. Four detailed combustion mechanisms are used to calculate the laminar flame velocities and species mole fraction profiles: GRI-Mech 3.0, Dagaut, UCSD, and GDFkin®3.0.  相似文献   

18.
The chemical and thermal structure of a Mache-Hebra burner stabilized premixed rich CH4/O2/N2 flame with additives of vapors of triphenylphosphine oxide [(C6H5)3PO], hexabromocyclododecane (C12H18Br6), and ethyl bromide (C2H5Br) was studied experimentally using molecular beam mass spectrometry (MBMS) and a microthermocouple method. The concentration profiles of stable and active species, including atoms and free radicals, and flame temperature pro.les were determined at a pressure of 1 atm. A comparison of the experimental and modeling results on the flame structure shows that MBMS is a suitable method for studying the structure of flames stabilized on a Mache-Hebra burner under near-adiabatic conditions. The relative flame inhibition effectiveness of the added compounds is estimated from changes in the peak concentrations of H and OH radicals in the flame and from changes in the flame propagation velocity. The results of the investigation suggest that place of action of the examined flame retardants is the gas phase. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 5, pp. 12–20, September–October, 2007.  相似文献   

19.
The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298 K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.  相似文献   

20.
The catalytic behavior of Ni/Ce-ZrO2/θ-Al2O3 has been investigated in the partial oxidation of methane (POM) toward synthesis gas. The catalyst showed high activity and selectivity due to the heat treatment of the support and the promotional effect of Ce-ZrO2. It is suggested that the support was stabilized through the heat treatment of γ-Al2O3 and the precoating of Ce-ZrO2, on which a protective layer was formed. Moreover, sintering of the catalyst was greatly suppressed for 24 h test. Pulse experiments of CH4, O2 and/or CH4/O2 with a molar ratio of 2 were systematically performed over fresh, partially reduced and well reduced catalyst. Results indicate that CH4 can be partially oxidized to CO and H2 by the reactive oxygen in complex NiOx species existing over the fresh catalyst. It is demonstrated that POM over Ni/Ce-ZrO2/θ-Al2O3 follows the pyrolysis mechanism, and both the carbonaceous materials from CH4 decomposition over metallic nickel and the reactive oxygen species present on NiOx and Ce-ZrO2 are intermediates for POM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号