首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the exact analysis of a multihop multibranch (MHMB) relaying network is investigated wherein each relay can operate in amplify‐and‐forward (AF) or decode‐and‐forward (DF) modes depending upon the decoding result of its received signal. If a relay decodes the received signal correctly, it works in DF mode; otherwise, the relay operates in AF mode. Therefore, we name such relaying network as hybrid amplify‐and‐forward and decode‐and‐forward (hybrid AF/DF) relaying network. We first investigate the signal transmission from source to destination node via n number of relays in a hybrid AF/DF MHMB mode. Then, we obtained the statistical features and analyze the end‐to‐end signal‐to‐noise ratio (SNR). Finally, a comprehensive performance analysis is conducted by using maximal ratio combining (MRC) scheme at the destination node. For comparison, we also obtained the results using selection combining (SC) scheme at the destination node. To the best of our knowledge, very few works in the literature have considered a general system model of MHMB relaying network wherein each relay can operate in AF or DF modes, that is, a hybrid AF/DF relaying network. Accordingly, the analysis of our system model is not only novel and exact, but also is comprehensive and can be employed in the future works.  相似文献   

2.
Relay communications have attracted increasing research attentions as a cost‐effective technique to improve spatial diversity, service coverage, and energy efficiency in wireless networks. However, existing relay schemes (e.g., amplify‐and‐forward and decode‐and‐forward (DF) schemes) still face several major challenges, particularly the accumulation of multipath channels effect in AF and long processing latency in DF. To address these issues, we propose a novel equalize‐and‐forward (EF) relay scheme to enhance the retransmission reliability while maintaining low processing delay at the relay node. In particular, the proposed EF relay estimates and equalizes the channel between source and relay to eliminate the channel accumulation effect without signal regeneration. To further reduce the relay processing time, the channel estimation and equalization in the proposed EF design are performed in parallel. The proposed equalization is realized by presetting the equalizer coefficients with the current channel response that is predicted in parallel using multiple past channel responses. Numerical results show that the proposed EF relay scheme can achieve comparable symbol error rate performance as the DF relay with much less relay latency. In addition, the EF relay exhibits low outage probability at the same data rate as compared with traditional amplify‐and‐forward and DF schemes. schemes. Copyright © 2015 John Wiley & Sons, Ltd  相似文献   

3.
This paper analyzes the performance bounds of a wireless relay system consisting of several relay stations working on both amplifier‐and‐forward (AF) and decode‐and‐forward (DF) protocols. We want to study the outage probability behavior of the proposed mixed AF and DF relay systems under independent Nakagami‐m fading channels. In particular, we will derive the lower and upper bounds of outage probability of the mixed AF and DF relay systems based on maximal ratio combining diversity reception. The results give optimal configuration of AF and DF relays under a specific channel condition, thus helping us to design an optimized mixed AF and DF relay system in a generic fading environment. The trade‐off between complexity and performance is discussed in this paper. In addition, we will use computer simulations to verify the effectiveness of the proposed mixed AF and DF relay configurations. Finally, the power allocation issues for such a mixed AF and DF relay system will also be discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the error performance of three relaying protocols with multiple decode‐and‐forward relays. In the first protocol, relays that can decode correctly will forward the signals from source. Nevertheless, selection cooperation (SC) and opportunistic relaying (OR) are adopted to select only a single relay to forward in the other two protocols, respectively. At sufficiently high signal‐to‐noise ratio, the upper bounds on bit error probability are derived for three protocols, where the developments apply for various channel fading models. Simulation results are provided to verify the tightness of the analytical bounds, and the performance comparisons among different relaying protocols are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper considers the cognitive radio network with one primary user (PU), one secondary user (SU), and multiple decode‐and‐forward relays. We propose a relaying scheme to ensure the priority of primary transmission, where the relays are used to forward PU's message and sometimes also SU's message. First, SU is allowed to use the spectrum to transmit only when its transmission would not affect the decoding status of PU's message at all relays. Second, once the secondary transmission happens, the relays that successively decode SU's message are allowed to retransmit this message when it would not affect the decoding status of PU's message at primary receiver. The interference from PU to SU and the interference from SU to PU are both considered. By analyzing the decoding status of primary message and secondary message at different relays, we formulate the outage probabilities of both primary transmission and secondary transmission. When all channels follow Rayleigh distributions, we derive the analytical expressions for the general case of any number of relays, which are validated by means of Monte Carlo simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Binyue Liu  Ye Yang 《ETRI Journal》2014,36(4):599-608
This paper studies a parallel relay network where the relays employ an amplify‐and‐forward (AF) relaying scheme and are subjected to individual power constraints. We consider correlated effective relay noise arising from practical scenarios when the relays are exposed to common interferers. Assuming that the noise covariance and the full channel state information are available, we investigate the problem of finding the optimal AF scheme in terms of maximum end‐to‐end transmission rate. It is shown that the maximization problem can be equivalently transformed to a convex semi‐definite program, which can be efficiently solved. Then an upper bound on the maximum achievable AF rate of this network is provided to further evaluate the performance of the optimal AF scheme. It is proved that the upper bound can be asymptotically achieved in two special regimes when the transmit power of the source node or the relays is sufficiently large. Finally, both theoretical and numerical results are given to show that, on average, noise correlation is beneficial to the transmission rate — whether the relays know the noise covariance matrix or not.  相似文献   

7.
Cooperative communication based on relaying nodes has been considered as a promising technique to increase the physical layer security (PLS) performance in wireless communications. In this paper, an optimal power allocation (OPA) scheme based on Nelder‐Mead (NM) algorithm is proposed for improving the secrecy rate of amplify‐and‐forward (AF) cooperative relay networks employing cooperative jamming (CJ) scheme. The proposed hybrid jamming scheme allows the source and selected relay to transmit the jamming signal along with the information to confound the eavesdropper. The path selection probability of ant colony optimization (ACO) algorithm is used for selecting the relay for transmission. The performance based on secrecy rate is evaluated for “n” trusted relays distributed dispersedly between the source and destination. Gradient‐based optimization and three‐dimensional exhaustive search methods are used as benchmark schemes for comparison of the proposed power optimization algorithm. The secrecy performance is also compared with conventional AF scheme and CJ scheme without power optimization (EPA). The impact of single and multiple relays on secrecy performance is also evaluated. Numerical results reveal that, compared with the gradient method and exhaustive search algorithm, the proposed power allocation strategy achieves optimal performance. Also, the derived OPA results show a significantly higher secrecy rate than the EPA strategy for both CJ and AF schemes.  相似文献   

8.
This letter investigates the joint effects of imperfect channel state information and co‐channel interferences on a two‐hop fixed gain amplify‐and‐forward (AF) relay network with beamforming. Specifically, the analytical expressions of the outage probability and the average symbol error rate for the AF relaying are derived. Moreover, the asymptotic analysis at high signal‐to‐noise ratio is also presented to reveal the diversity order and array gain of the considered AF relay system. Finally, computer simulations are given to confirm the validity of the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a cooperative quadrature physical layer network coding (CQPNC) scheme for a dual‐hop cooperative relay network, which consists of two source nodes, one relay node and one destination node. All nodes in the network have one antenna, and the two source nodes transmit their signals modulated with quadrature carriers. In this paper, a cooperative quadrature physical layer network coded decode‐and‐forward (DF) relay protocol (CQPNC‐DF) is proposed to transmit the composite information from the two source nodes via the relay node to the destination node simultaneously to reduce the number of time slots required for a transmission. The proposed CQPNC‐DF relay protocol is compared with time‐division multiple‐access amplify‐and‐forward (TDMA‐AF), TDMA‐DF, cooperative network coded DF (CNC‐DF) and cooperative analog network coded AF (CANC‐AF) relay protocols to demonstrate its effectiveness in terms of bit error rate (BER) and system throughput under different propagation conditions. The simulation results reveal that the proposed CQPNC‐DF relay protocol can significantly improve the network performance. Compared with two TDMA schemes and CNC‐DF, the proposal can provide up to 100% and 50% throughput gains, respectively. Moreover, no matter what the scene, the proposed scheme always has the lowest BER in the low SNR region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Two new demodulate‐and‐forward schemes of multi‐relay cooperative diversity with switch‐and‐examine relaying (SER) are analyzed. To reduce relay usage and enhance bandwidth efficiency, the two new cooperative diversity schemes employ a switch‐based relay selection. The proposed schemes consume less communication resource than regular relaying schemes, such as the selection combining (SC) or maximal ratio combining (MRC) schemes that always use all relays, and also achieve better performance than distributed switch‐and‐stay schemes. In the first scheme, the decision statistic for relay usage and selection is based on the signal‐to‐noise ratio (SNR). In the second scheme, the log‐likelihood ratio (LLR) of received signals is used for the decision of relay usage and selection. With the two SER schemes, the bit error probability (BEP) of binary phase shift keying (BPSK) and the average number of used paths are derived and expressed in closed‐form for the independent and identically distributed (i.i.d.) Rayleigh fading channels. Numerical and simulation results are presented for performance illustrations. According to the numerical results, the LLR‐based SER not only achieves a lower BEP but also consumes less relay resource than the SNR‐based SER. Furthermore, the LLR‐based SER scheme even outperforms the corresponding SNR‐based SC scheme for a range of average SNR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In cooperative communications, multiple relays between a source and a destination can increase the diversity gain. Because all the nodes must use orthogonal channels, multiple‐relay cooperation becomes spectrally inefficient. Therefore, a bestrelay selection scheme was recently proposed. In this paper, we analyzed the performance of this scheme for a system with the relays operating in amplify‐and‐forward mode over identical Nakagami‐m channels using an exact source–relay–destination signal‐to‐noise ratio (SNR).We derived accurate closed‐form expressions for various system parameters including the probability density function of end‐to‐end SNR, the average output SNR, the bit error probability, and the channel capacity. The analytical results were verified through Monte Carlo simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper derives the asymptotic symbol error rate (SER) and outage probability of decode‐and‐forward (DF) cooperative communications over Rician fading channels. How to optimally allocate the total power is also addressed when the performance metric in terms of SER or outage probability is taken into consideration. Analysis reveals the insights that Rician factor has a great impact on the system performance as compared with the channel variance, and the relay–destination channel quality is of importance. In addition, the source–relay channel condition is irrelevant to the optimal power allocation design. Simulation and numerical evaluation substantiate the tightness of the asymptotic expressions in the high‐SNR regions and demonstrate the accuracy of our theoretical analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The performance of multi‐antenna relay communication systems is investigated in this letter. The source broadcasts the signal to all the relays and the destination. Decode‐and‐forward scheme is adopted at the relays, and the destination employs maximum ratio combining (MRC) technique to maximize the received signal‐to‐noise ratio. Closed‐form expressions of outage probability are derived in the MRC case and minimum routes MRC case. An adaptive grouping algorithm of relay antennas is also presented under the constraint of total antenna number. Simulation results show that the analytical curves agree with the simulated ones very well, and the performance of the proposed grouping algorithm is very close to the upper bound mentioned in other papers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We consider a two‐hop multiple‐relay network implemented with opportunistic decode‐and‐forward cooperative strategy, where the first hop and second hop links experience different fading (Rayleigh and Rician). We derive the exact expressions of end‐to‐end outage probability and analyze the approximate results in high signal‐to‐noise ratio region. The analysis shows that the same diversity order can be achieved even in different mixed fading environments. Simulation results are provided to verify our analysis.  相似文献   

15.
In this paper, a game theoretic relay load balancing and power allocation scheme is proposed for downlink transmission in a decode‐and‐forward orthogonal frequency division multiple access‐based cellular relay network. A system with a base station communicating with multiple users via multiple relays is considered. The relays have limited power, which must be divided among the users they support. In traditional scheme, each relay simply divides its transmit power equally among all its users. Moreover, each user selects the relay with the highest channel gain. In this work, we do not apply the traditional relay scheme. It is because the users are distributed randomly, and by applying the traditional relay selection scheme, it may happen that some relays have more users connected to them than other relays, which results in having unbalanced load among the relays. In order to avoid performance degradation, achieve relay load balancing, and maximize the total data rate of the network, a game theoretic approach is proposed, which efficiently assigns the users to relays. The power of each relay is wisely distributed among users by the efficient power allocation scheme. Simulation results indicate that the proposed game‐based scheme can considerably improve the average sum‐spectral efficiency. Moreover, it shows that by applying the game, users who can connect to uncongested relays join them as opposed to connecting to congested relays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Cooperative hybrid‐automatic repeat request (HARQ) protocols, which can exploit the spatial and temporal diversities, have been widely studied. The efficiency of cooperative HARQ protocols is higher than that of cooperative protocols because retransmissions are only performed when necessary. We classify cooperative HARQ protocols as three decode‐and‐forward‐based HARQ (DF‐HARQ) protocols and two amplified‐and‐forward‐based HARQ (AF‐HARQ) protocols. To compare these protocols and obtain the optimum parameters, two unified frameworks are developed for protocol analysis. Using the frameworks, we can evaluate and compare the maximum throughput and outage probabilities according to the SNR, the relay location, and the delay constraint. From the analysis we can see that the maximum achievable throughput of the DF‐HARQ protocols can be much greater than that of the AF‐HARQ protocols due to the incremental redundancy transmission at the relay.  相似文献   

17.
In this study, new cooperative‐quadrature spatial modulation techniques based on Euclidean distance and capacity optimized antenna selection techniques (EDAS‐CQSM and COAS‐CQSM) are proposed for cooperative communication systems. The considered cooperative system consists of three terminals that are the source terminal (ST), relay terminal (RT), and destination terminal (DT). The decode‐and‐forward (DF) cooperative technique is considered to retransmit the signal at the RT. In order to improve the performance of the conventional QSM demodulator in the RT and DT, both antenna selection techniques have been used in both the ST and RT to reduce performance degradation due to error propagation of the DF scheme. Therefore, the overall performance of the considered CQSM system has been increased. Furthermore, computer simulations have shown that the proposed EDAS/COAS‐CQSM systems have better the performances than the cooperative spatial modulation (CSM), CQSM, EDAS‐CSM, COAS‐CSM, and traditional DF‐based cooperative system with the same bit rate.  相似文献   

18.
In this paper, we propose an adaptive amplify‐and‐forward (AF) relaying scheme that selects the best relay among the available relay nodes opportunistically to cooperate with a source node for improvement of the spectral efficiency. This improvement can be achieved by introducing a policy that gives the useful cooperative regions and defines a switching threshold signal‐to‐noise ratio that guarantees the bit error rate (BER) of cooperative transmission is below the target. We model all links as independent non‐identically distributed Rayleigh fading channels. We then derive closed‐form expressions for the average spectral efficiency, average BER, and outage probability when an upper bound for the signal‐to‐noise ratio of the end‐to‐end relay path is applied and adaptive discrete rate is considered. Numerical and simulation results show that the proposed scheme, compared with the outage‐based AF incremental relaying, AF fixed relaying, and the conventional direct transmission, can achieve the maximum average spectral efficiency while maintaining the average BER and outage probability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Xianyi Rui 《ETRI Journal》2010,32(1):139-141
In this letter, closed‐form approximations for outage probability and symbol error rate are presented for a selective decode‐and‐forward relay network with partial channel information. An independent but not identically distributed Rayleigh fading environment is considered. Numerical and simulated results demonstrate the validity of the analytical results.  相似文献   

20.
Recently, efficient partial relay selection (e‐PRS) was proposed as an enhanced version of PRS. In comparing e‐PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e‐PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e‐PRS in decode‐and‐forward (DF) relaying systems over non‐identical Nakagami‐m fading channels, where the fading parameter m is an integer. In particular, we provide closed‐form expressions of the exact outage probability and asymptotic outage probability for e‐PRS in DF relaying systems. Numerical results show that e‐PRS achieves similar outage performance to that of BRS for a low or medium signal‐to‐noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号