首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full-duplex radio-on-fiber system using a newly developed 60-GHz-band optical transceiver is investigated. We fabricated a 60-GHz-band two-radio-frequency (RF)-port electroabsorption transceiver (EAT) module, which is the first developed 60-GHz-band optical transceiver in the world. The EAT module has individual RF input and output ports, each with impedance-matching circuits that enhance modulation and detection efficiencies near 60 GHz. A radio-on-fiber testbed adopting the EAT has an advantage that a base station becomes the simplest configuration, which basically consists of only the 60-GHz-band EAT. Using the radio-on-fiber testbed, the simultaneous transmission of 59.6-GHz (downlink) and 60.0-GHz (uplink) signals with data of 156 Mb/s is experimentally demonstrated  相似文献   

2.
The design and measured results of a single-substrate transceiver module suitable for 76-77-GHz pulsed-Doppler radar applications are presented. Emphasis on ease of manufacture and cost reduction of commercial millimeter-wave systems is employed throughout as a design parameter. The importance of using predictive modeling techniques in understanding the robustness of the circuit design is stressed. Manufacturing techniques that conform to standard high-volume assembly constraints have been used. The packaged transceiver module, including three waveguide ports and intermediate-frequency output, measures 20 mm×22 mm×8 mm. The circuit is implemented using discrete GaAs/AlGaAs pseudomorphic high electron mobility transistors (pHEMTs), GaAs Schottky diodes, and varactor diodes, as well as GaAs p-i-n and pHEMT monolithic microwave integrated circuits mounted on a low-cost 127-μm-thick glass substrate. A novel microstrip-to-waveguide transition is described to transform the planar microstrip signal into the waveguide launch. The module is integrated with a quasi-optical antenna. The measured performance of both the component parts and the complete radar transceiver module is described  相似文献   

3.
A single-chip dual-band tri-mode CMOS transceiver that implements the RF and analog front-end for an IEEE 802.11a/b/g wireless LAN is described. The chip is implemented in a 0.25-/spl mu/m CMOS technology and occupies a total silicon area of 23 mm/sup 2/. The IC transmits 9 dBm/8 dBm error vector magnitude (EVM)-compliant output power for a 64-QAM OFDM signal. The overall receiver noise figure is 5.5/4.5 dB at 5 GHz/2.4 GHz. The phase noise is -105 dBc/Hz at a 10-kHz offset and the spurs are below -64 dBc when measured at the 5-GHz transmitter output.  相似文献   

4.
A set of three bipolar integrated circuits for a new fiber-optic link is described. The link operates at data rates of 5-200 Mb/s NRZ. The optical transmitter and receiver modules are compact and fit into standard 16-pin dual-in-line sockets. The power consumption of the transmitter module is 530 mW and the receiver module dissipates 310 mW. The optical loss budget is 20 dB, which is sufficient for link lengths of up to 5 or 6 km. The circuits have been designed in a 3-/spl mu/m bipolar process. The chip sizes are 2 mm/spl times/1.75 mm each.  相似文献   

5.
A 120-GHz-band wireless link that uses millimeter-wave (MMW) photonic techniques was developed. The output power and noise characteristics of 120-GHz-band MMWs generated by converting a 125-GHz optical subcarrier signal were evaluated. It was then shown that the noise characteristics of the 125-GHz signal generated with these photonic technologies is sufficient for 10-Gb/s data transmission. We constructed a compact 120-GHz-band wireless link system, and evaluated its data transmission characteristics. This system achieved error-free transmission of OC-192 and 10-GbE signals over a distance of more than 200 m with a received power of below -30 dBm.  相似文献   

6.
A fully integrated CMOS direct-conversion 5-GHz transceiver with automatic frequency control is implemented in a 0.18-/spl mu/m digital CMOS process and housed in an LPCC-48 package. This chip, along with a companion baseband chip, provides a complete 802.11a solution The transceiver consumes 150 mW in receive mode and 380 mW in transmit mode while transmitting +15-dBm output power. The receiver achieves a sensitivity of better than -93.7dBm and -73.9dBm for 6 Mb/s and 54 Mb/s, respectively (even using hard-decision decoding). The transceiver achieves a 4-dB receive noise figure and a +23-dBm transmitter saturated output power. The transmitter also achieves a transmit error vector magnitude of -33 dB. The IC occupies a total die area of 11.7 mm/sup 2/ and is packaged in a 48-pin LPCC package. The chip passes better than /spl plusmn/2.5-kV ESD performance. Various integrated self-contained or system-level calibration capabilities allow for high performance and high yield.  相似文献   

7.
We describe a CMOS multichannel transceiver that transmits and receives 10 Gb/s per channel over balanced copper media. The transceiver consists of two identical 10-Gb/s modules. Each module operates off a single 1.2-V supply and has a single 5-GHz phase-locked loop to supply a reference clock to two transmitter (Tx) channels and two receiver (Rx) channels. To track the input-signal phase, the Rx channel has a clock recovery unit (CRU), which uses a phase-interpolator-based timing generator and digital loop filter. The CRU can adjust the recovered clock phase with a resolution of 1.56 ps. Two sets of two-channel transceiver units were fabricated in 0.11-/spl mu/m CMOS on a single test chip. The transceiver unit size was 1.6 mm /spl times/ 2.6 mm. The Rx sensitivity was 120-mVp-p differential with a 70-ps phase margin for a common-mode voltage ranging from 0.6 to 1.0 V. The evaluated jitter tolerance curve met the OC-192 specification.  相似文献   

8.
Silicon planar and three-dimensional inductors and transformers were designed and characterized on-wafer up to 100 GHz. Self-resonance frequencies (SRFs) beyond 100 GHz were obtained, demonstrating for the first time that spiral structures are suitable for applications such as 60-GHz wireless local area network and 77-GHz automotive RADAR. Minimizing area over substrate is critical to achieving high SRF. A stacked transformer is reported with S/sub 21/ of -2.5 dB at 50 GHz, and which offers improved performance and less area (30 /spl mu/m/spl times/30 /spl mu/m) than planar transformers or microstrip couplers. A compact inductor model is described, along with a methodology for extracting model parameters from simulated or measured y-parameters. Millimeter-wave SiGe BiCMOS mixer and voltage-controlled-oscillator circuits employing spiral inductors are presented with better or comparable performance to previously reported transmission-line-based circuits.  相似文献   

9.
A dual-band trimode radio fully compliant with the IEEE 802.11a, b, and g standards is implemented in a 0.18-/spl mu/m CMOS process and packaged in a 48-pin QFN package. The transceiver achieves a receiver noise figure of 4.9/5.6 dB for the 2.4-GHz/5-GHz bands, respectively, and a transmit error vector magnitude (EVM) of 2.5% for both bands. The transmit output power is digitally controlled, allowing per-packet power control as required by the forthcoming 802.11 h standard. A quadrature accuracy of 0.3/spl deg/ in phase and 0.05 dB in amplitude is achieved through careful analysis and design of the I/Q generation parts of the local oscillator. The local oscillators achieve a total integrated phase noise of better than -34 dBc. Compatibility with multiple baseband chips is ensured by flexible interfaces toward the A/D and D/A converters, as well as a calibration scheme not requiring any baseband support. The chip passes /spl plusmn/2 kV human body model ESD testing on all pins, including the RF pins. The total die area is 12 mm/sup 2/. The power consumption is 207 mW in the receive mode and 247 mW in the transmit mode using a 1.8-V supply.  相似文献   

10.
We present a wireless link system that uses millimeter-wave (MMW) photonic techniques. The photonic transmitter in the wireless link consists of an optical 120-GHz MMW generator, an optical modulator, and a high-power photonic MMW emitter. A uni-traveling carrier photodiode (UTC-PD) was used as the photonic emitter in order to eliminate electronic MMW amplifiers. We evaluated the dependence of UTC-PD output power on its transit-time limited bandwidth and its CR-time constant limited bandwidth, and employed a UTC-PD with the highest output power for the photonic emitter. As for the MMW generation, we developed a 120-GHz optical MMW generator that generates a pulse train and one that generates a sinusoidal signal. The UTC-PD output power generated by a narrow pulse train was higher than that generated by sinusoidal signals under the same average optical power condition, which contributes to reducing the photocurrent of the photonic emitter. We have experimentally demonstrated that the photonic transmitter can transmit data at up to 3.0 Gb/s. The wireless link using the photonic transmitter can be applied to optical gigabit Ethernet signals.  相似文献   

11.
The drive for cost reduction has led to the use of CMOS technology in the implementation of highly integrated radios. This paper presents a single-chip 5-GHz fully integrated direct conversion transceiver for IEEE 802.11a WLAN systems, manufactured in 0.18-/spl mu/m CMOS. The IC features an innovative system architecture which takes advantage of the computing resources of the digital companion chip in order to eliminate I/Q mismatch and achieve accurately matched baseband filters. The integrated voltage-controlled oscillator and synthesizer achieve an integrated phase noise of less than 0.8/spl deg/ rms. The receiver has an overall noise figure of 5.2 dB and achieves sensitivity of -75 dBm at 54-Mb/s operation, both referred to the IC input. The transmit error vector magnitude is -33 dB at -5-dBm output power from the integrated power-amplifier driver amplifier. The transceiver occupies an area of 18.5 mm/sup 2/.  相似文献   

12.
We developed an analog optical system-on-package (SoP) transmitter for a 60-GHz-band radio-over-fiber (RoF) link. The SoP transmitter consisted of an electroabsorption modulator, radio frequency amplifiers, and a bandpass filter. The 60-GHz RoF wireless link was prepared to measure the performance of the SoP transmitter. The transmission characteristics of 64-quadrature amplitude modulation (64-QAM) data of the 60-GHz RoF wireless link, including the SoP transmitter, were investigated by measuring the error vector magnitude (EVM) and signal-to-noise ratio (SNR) with a baseband frequency. The EVM of the 60-GHz RoF wireless link was between 2.25% and 2.80%, and the SNR was between 27.36 and 29.31 dB from 140 and 770 MHz, at input baseband power of -9 dBm. The noise figure had the minimum of 8.44 dB at 500 MHz. We successfully transmitted digital community antenna television (CATV) system signals through the 60-GHz RoF wireless link, including the SoP transmitter. Digital CATV signals of 86 channels could be transmitted through the 60-GHz RoF wireless link, and the total throughput was found to be 2.61 Gb/s.  相似文献   

13.
For the first time to our knowledge, we demonstrate a transmission of 37 channels a 64 quadratic-amplitude-modulation (QAM)-coded high-definition television (HD-TV) signal over a fiber-optic millimeter-wave link. The 60-GHz upconverter/downconverter is implemented based on a Gunn oscillator and a nonradiative dielectric waveguide. For the remote delivery of 37 channels of HD-TV signal through 20 km of single-mode fiber, we use a laser diode operating at 1554 nm and an electroabsorption modulator. We evaluate the performances of HD-TV by measuring error vector magnitude and confirm transmission qualities by observing video contents coded with moving picture expert group-2 (MPEG-2).  相似文献   

14.
Our proposed millimeter-wave self-heterodyne transmission technique is a simple and cost-effective solution to frequency stability problems in millimeter-wave access systems. In addition, this technique enables integration of a high-sensitivity receiver with a combining antenna diversity system that is approximately as effective as a maximal-ratio-combining antenna diversity system for all directions of signal arrival. We explain how our newly developed 70-GHz-band transceiver using the millimeter-wave self-heterodyne transmission technique with a receiver-module array can greatly improve receiver sensitivity for all directions of signal arrival i.e., without affecting the signal reception beam pattern and how this can solve the signal-fading problem in a multipath signal propagation environment. We also theoretically demonstrate that receiver sensitivity improves in proportion to the number of elements in a receiver-module array, and experimentally confirm this using an experimental 70-GHz-band monolithic microwave integrated circuit transceiver with a 4/spl times/2 receiver-module array. We show that millimeter-wave signal propagation can be modeled using a two-path model, and that serious signal fading depends on the transceiver height and transmission distance. Carrier and modulated signal transmission experiments using our developed transceiver have revealed that use of a receiver-module array greatly reduces the signal-fading problem in a multipath signal propagation environment. In the signal transmission experiment, we succeeded in transmitting an orthogonal frequency-division multiplexing signal over a 4-m transmission distance with bit-error-free performance.  相似文献   

15.
A family of millimeter-wave sources based on InP heterojunction bipolar transistor (HBT) monolithic microwave/millimeter-wave integrated circuit (MMIC) technology has been developed. These sources include 40-GHz, 46-GHz, 62-GHz MMIC fundamental mode oscillators, and a 95-GHz frequency source module using a 23.8-GHz InP HBT MMIC dielectric resonator oscillator (DRO) in conjunction with a GaAs-based high electron mobility transistor (HEMT) MMIC frequency quadrupler and W-band output amplifiers. Good phase noise performance was achieved due to the low 1/f noise of the InP-based HBT devices. To our knowledge, this is the first demonstration of millimeter-wave sources using InP-based HBT MMIC's  相似文献   

16.
This paper presents a single-chip dual-band CMOS direct-conversion transceiver fully compliant with the IEEE 802.11a/b/g standards. Operating in the frequency ranges of 2.412-2.484 GHz and 4.92-5.805 GHz (including the Japanese band), the fractional-N PLL based frequency synthesizer achieves an integrated (10 kHz-10 MHz) phase noise of 0.54/spl deg//1.1/spl deg/ for 2/5-GHz band. The transmitter error vector magnitude (EVM) is -36/-33 dB with an output power level higher than -3/-5dBm and the receiver sensitivity is -75/-74 dBm for 2/5-GHz band for 64QAM at 54 Mb/s.  相似文献   

17.
A self-calibrated quadrature generator capable of generating local oscillator (LO) outputs for IEEE 802.11a-b is presented. The quadrature generator is embedded in a frequency synthesizer that generates reference frequencies at 2.4 and 5GHz. A new sequential calibration scheme maintains the quadrature at the 5-GHz output within a maximum phase error of 2/spl deg/, while a divide-by-two flip-flop generates the quadrature output at 2.4 GHz. The circuit is fabricated in a 0.25-/spl mu/m SiGe BiCMOS technology and occupies a silicon area of 2 mm/sup 2/; the quadrature generator consumes a current of 5 mA from a 2.5-V supply.  相似文献   

18.
This paper describes a solid-state millimeter-wave transmitter module consisting of an IMPATT oscillator, p-i-n quadri-phase modulator, and a three-stage IMPATT amplifier. The module has been operated up to 4-Gbits/s modulation rate with 500-mW output power in the 60-GHz range.  相似文献   

19.
We describe a compact free-space photonic-switching module that uses micro-beam optical interconnections based on stacked planar optics and exciton absorption reflection switch (EARS) arrays. The switching module has two-dimensional fiber array pigtails and a two-stage, 16-input, 16-output structure (four sets of 4/spl times/4 switches). The microbeam optical interconnections can provide a compact switching module (approximately 30/spl times/90/spl times/22 mm [60 cc]). A relay lens array inserted between stages eliminates beam spreading in the switch and decreases the coupling loss and crosstalk of interconnections. Two-stage switching at a data transmission rate of 4 Mbit/s is demonstrated.  相似文献   

20.
A 60-GHz varactor-tuned microstrip oscillator intended for use in a millimeter-wave radio relay experiment has been designed and tested. The output power of the transmitter is 110 /spl plusmn/ 15 mW from 58.5 to 60.1 GHz. The oscillator can be frequency-shift keyed (FSK) at a rate up to 200 Mbit/s. The rms FM noise of about 400 Hz/(kHz)/sup 1/2/ meets the required system specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号