首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
《Ceramics International》2023,49(13):21492-21501
Copper-clad laminate (CCL) comprised of copper foil and polytetrafluoroethylene (PTFE) faces severe thermal expansion mismatch due to the discrepancy in coefficient of thermal expansion (CTE) between the two components. Incorporating inorganic fillers with low CTE into PTFE has been proved to be a promising way to achieve the goal. However, it is a challenge to achieve homogeneous distribution and good interfacial interaction of fillers in PTFE composites owing to the characteristics of PTFE emulsion. In this work, core@shell structured SiO2@polydopamine fillers (SiO2@PDA) were synthesized and incorporated into PTFE matrix to form SiO2@PDA/PTFE composites. Due to the presence of PDA shell, SiO2@PDA exhibited improved dispersion and interfacial interaction, contributing to the reduced CTE and suppressed dielectric deterioration of SiO2@PDA/PTFE composites. With 40 vol% of filler, the CTE of SiO2@PDA/PTFE composite was efficiently reduced (50%), coupled with a limited sacrifice of only 2% and 40% of increments for dielectric constant (Dk, 2.3) and dielectric loss (Df, 2.4 × 10−3), respectively (@40 GHz), as compared with that of the corresponding SiO2/PTFE composite. The fillers and composites were comprehensively characterized to verify the mechanism of CTE and dielectric properties of the composites.  相似文献   

2.
The addition-type liquid silicone rubber (ALSR) co-filled with spheroidal Al2O3 and flaky BN was prepared by the mechanical blending and hot press methods to enhance the thermal, electrical, and mechanical properties for industrial applications. Morphologies of ALSR composites were observed by scanning electron microscopy (SEM). It was found that the interaction and dispersion state of fillers in the ALSR matrix were improved by the introduction of BN sheets. Thermal, electrical, and mechanical performances of the ALSR composites were also investigated in this work. The result indicated that the thermal conductivity of ALSR can reach 0.64 W m−1 K−1 at the loading of 20 wt% Al2O3/20 wt% BN, which is 3.76 times higher than that of pure ALSR. The addition of Al2O3 particles and BN sheets also improve the thermal stability of ALSR composites. Moreover, pure ALSR and ALSR composites showed relatively lower dielectric permittivity (1.9–3.1) and dielectric loss factor (<0.001) at the frequency of 103 Hz. The insulation properties including volume resistivity and breakdown strength were improved by the introduction of flaky BN in the ALSR matrix. The volume resistivity and characteristic breakdown strength E0 are 6.68 × 1015 Ω m and 93 kV/mm, respectively, at the loading of 20 wt% Al2O3/20 wt% BN. In addition, the mechanical characteristics including elongation at break and tensile strength of ALSR composites were also enhanced by co-filled fillers. The combination of these improved performances makes the co-filled ALSR composites attractive in the field of electrical and electronic applications.  相似文献   

3.
Ionic liquids grafted with multiwalled-nanotubes (CNT Br/NTf2), involving hydrophilic bromide salt and hydrophobic bis(trifluoromethanesulphonyl)imide salt, were prepared by amidation, followed by an easy solution-casting method of blending CNT Br/NTf2 with sodium polyacrylate (PAA) as well as crosslinking agent (XR-100) to form PAA hybrid nanocomposites. The uniform dispersion of CNT Br/NTf2 were analyzed by TEM. The defects and physical properties of fillers were characterized by Raman spectroscopy, Contact angle test, and TGA. Furthermore, microstructures of hybrid nanocomposites were characterized by SEM, from which it can be found that fillers were homogeneously distributed in the PAA matrix. CNT Br/NTf2 significantly improved the mechanical properties and tensile fatigue resistance, as well as offered tunable swelling behavior of PAA nanocomposites without wasting too much of thermal stability. This study offers a simple approach to develop multifunctional materials based on ionic liquids covalently modified MWCNTs PAA nanocomposites.  相似文献   

4.
《Ceramics International》2022,48(8):10447-10457
Conductor/polymer nanocomposites can achieve high dielectric constant with low filler loading, but conductive fillers come into contact with each other easily, resulting in the formation of conductive paths. In this work, MXene/TiO2/MoS2 nanosheets were prepared by one-step hydrothermal method, and MXene/TiO2/MoS2/poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films were prepared by solution casting method. At 1 kHz, with an optimized MXene/TiO2/MoS2 nanosheets loading of 8.0 wt%, MXene/TiO2/MoS2/P(VDF-HFP) nanocomposite films achieve a high dielectric constant of 944 and maintain a low dielectric loss of 0.19. TiO2 and MoS2 semiconductive layers on the surface of MXene nanosheets can prevent the formation of conductive paths, and therefore, nanocomposite films possess suppressed electrical conductivity. Moreover, MXene/TiO2/MoS2 nanosheets can build more microcapacitor structures in nanocomposite films with higher filler loading, which further improves the dielectric constant of nanocomposite films. Finite element simulation shows that TiO2 and MoS2 semiconductive layers can lower the electric field intensity and polarization intensity at the interface between conductive fillers and polymer matrix. Herein, MXene/TiO2/MoS2/P(VDF-HFP) nanocomposite films possess not only excellent dielectric properties, but also excellent mechanical properties, which can be used as flexible dielectric materials in electronic packaging technology.  相似文献   

5.
Nylon 1010 composites filled with two types of surface‐modified SiO2 nanoparticles (RNS and DNS) were prepared by melt blending. The mechanical properties of the composites were evaluated. The influences of the surface‐modified nano‐SiO2 on the thermal stability, crystallization behavior, and microstructure of nylon 1010 were investigated by thermogravimetric analysis, differential scanning calorimetry (DSC), X‐ray diffraction, and transmission electron microscopy. And the interfacial interactions between the fillers and polymer matrix were examined using a Fourier transformation infrared spectrometer. It was found that the addition of the surface‐modified nano‐SiO2 had distinct influences on the thermal stability, mechanical properties, and crystallization behavior of nylon 1010. RNS and DNS as the fillers had different effects on the mechanical properties of nylon 1010. The composites filled with RNS at a mass fraction of 1–5% showed increased break elongation, Young's modulus, and impact strength but almost unchanged or even slightly lowered tensile strength than the unfilled matrix. The DNS‐filled nylon 1010 composites had obviously decreased tensile strength, whereas the incorporation of DNS also contributed to the increase in the Young's modulus of nylon 1010, but less effective than RNS. Moreover, the nylon 1010 composites had better thermal stability than the neat polymer matrix, and the composites filled with RNS were more thermally stable than those filled with DNS. The difference in the crystallinity of neat nylon 1010 and its composites filled with RNS and DNS was subtle, although the surface‐modified nano‐SiO2 could induce or/and stabilize the γ‐crystalline formation of nylon 1010. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A novel PVDF dielectric nanocomposite was achieved by controlling phase morphology and incorporating conductive fillers simultaneously, and the mechanical, thermal, dielectric properties of the resultant dielectric nanocomposites were investigated. Mechanical analysis showed that incorporation of modified MWCNTs (MWCNTs-COOH) in the PVDF nanocomposites resulted in significant improvements on the tensile strength (Ts) and elasticity modulus (Em). When the filler content was 12 wt%, the Ts of MWCNTs-COOH/PVDF could reach 64.6 MPa. XRD test showed that the addition of MWCNTs-COOH and MWCNTs promoted the formation of β-phase of PVDF. DMA analysis showed that the glass-transition temperature of the PVDF nanocomposites slightly increases on loading of original MWCNTs and this effect was more pronounced on loading MWCNTs-COOH. The dielectric property analysis showed that the original MWCNTs were more likely to form local conductive networks in the PVDF matrix, promoting the electron displacement polarization, and improving the dielectric constant. When the contents of MWCNTs was 12 wt%, the percolation threshold was obtained and the dielectric constant (ε′) reached 286, which was 36 times of pure PVDF. Our work provides a simple way to fabricate polymer blends with excellent dielectric performances, good mechanical properties as well as good processing capability but low cost. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48463.  相似文献   

7.
Novel low dielectric polyimide–SiO2 hybrid materials containing bipyridine were prepared with three-step sol–gel process from poly(amic acid)s. (3-Aminopropyl)triethoxysilane as coupling agent was used to increase the intrachain chemical bonding between the polyimide and SiO2 groups. The thermal, dielectric, and physical properties of the hybrid materials were investigated and correlated with the porous structure. The glass transition temperatures of all the hybrids were found to be higher than polyimides. The effect of SiO2 groups on the porous structure and dielectric properties was investigated. The dielectric constant of the hybrid materials was observed a decrease from 3.30 to 2.15 with increased SiO2 amount.  相似文献   

8.
Nanosilica/polyarylene ether nitriles terminated with phthalonitrile (SiO2/PEN‐t‐Ph) composites were prepared by hot‐press approach. To ensure the nano‐SiO2 can disperse uniformly, the solution casting method combined with ultrasonic dispersion technology had been taken previously. The mass fraction of nano‐SiO2 particles was varied to investigate their effect on the thermal, mechanical, and dielectric properties of the nanocomposites. From scanning electron microscope images, it was found that the nanoSiO2 particles were dispersed uniformly in the PEN‐t‐Ph matrix when the addition of nano‐SiO2 was less than 16.0 wt%. However, when the mass fraction of nano‐SiO2 increased to 20.0 wt%, the nano‐SiO2 particles tend to self‐aggregate and form microns sized particles. Thermal studies revealed that nano‐SiO2 particles did not weaken the thermal stabilities of the PEN‐t‐Ph matrix. Mechanical investigation manifested that the SiO2/PEN‐t‐Ph nanocomposites with 12.0 wt% nano‐SiO2 loading showed the best mechanical performance with tensile strength of 108.2 MPa and tensile modulus of 2107.5 Mpa, increasing by 14% and 19%, respectively as compared with the pure PEN‐t‐Ph film. Dielectric measurement showed that the dielectric constant increased from 3.70 to 4.15 when the nano‐SiO2 particles varied from 0.0 to 20.0 wt% at 1 kHz. Therefore, such composite was a good candidate for high performance materials at elevated temperature environment. POLYM. COMPOS., 35:344–350, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Three composites based on cyanate (CE) resin, aluminum nitride (AlN), surface‐treated aluminum nitride [AlN(KH560)], and silicon dioxide (SiO2) for microelectronic packaging, coded as AlN/CE, AlN(KH560)‐SiO2(KH560)/CE, and AlN‐SiO2/CE composite, respectively, were developed for the first time. The thermal conductivity and dielectric constant of all composites were investigated in detail. Results show that properties of fillers in composites have great influence on the thermal conductivity and dielectric constant of composites. Surface treatment of fillers is beneficial to increase the thermal conductivity or reduce dielectric constant of the composites. Comparing with binary composite, when the filler content is high, ternary composites possess lower thermal conductivity and dielectric constant. The reasons leading to these outcomes are discussed intensively. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
In this work, Phthalonitrile containing benzoxazine (BA-ph) and Bisphenol A based cyanate ester (CE) were chosen as the matrix resin. Various amount of nano-SiO2 was incorporated into BA-ph/CE and their glass fiber-reinforced composite laminates were fabricated. Curing reaction and processability of BA-ph/CE/SiO2 blends were studied by differential scanning calorimetry and dynamic rheological analysis. Results showed that BA-ph and CE exhibited good processability and curing reaction of BA-ph/CE was not obviously affected by SiO2. Scanning electron microscope images of the composites showed that SiO2 particles were well dispersed in BA-ph/CE matrix. Moreover, SiO2 could act as physical crosslinking points and diluent in matrix as well as between the glass fibers to improve the mechanical properties of composite laminates. As the results of dynamic mechanical analysis and thermogravimetry analysis, composite laminates possessed satisfactory Tg and good thermal stability. With incorporation SiO2 particles into matrix resin, dielectric constant and dielectric loss of BA-ph/CE/SiO2/GF composites were increased and showed frequency dependence.  相似文献   

11.
The treated hybrid fillers of aluminum nitride/glass fibers (AlN/GF) were performed to prepare the AlN/GF/epoxy composites by casting method. Results showed that the flexural and impact strength of the composites were increased firstly, but decreased with the excessive addition of AlN. The mechanical properties were optimal with 5 wt% treated AlN. The thermal conductivities of the composites were improved with the increasing content of AlN, and the thermal conductive coefficient λ was 1.412 W/mK with 70 wt% treated AlN, about seven times higher than that of pure epoxy resin. The dielectric constant and dielectric loss of the composites were increased with the increasing content of AlN. For a given AlN/GF hybrid fillers loading, the surface treatment of AlN/GF hybrid fillers exhibited a positive effect on the mechanical properties and thermal conductivities of the composites. POLYM. COMPOS., 35:381–385, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
A ternary composite system consisting of natural rubber (NR), porous reduced graphene oxide (rPGO), and molybdenum disulfide (MoS2) was introduced for applying in the dielectric field, of which rPGO and MoS2 hybrid conductive filler (rPGM) was prepared by an effective and environmentally friendly method-microwave reduction. And the well-dispersed NR composites (NGM) were made by the latex co-precipitation method. Due to the large specific surface area of rPGM itself and the synergistic dispersion of rPGO and MoS2, it formed many stable interface structures with the NR matrix, which not only made the blend exhibit high elasticity and withstood large deformation as NR but also greatly improved the dielectric, mechanical and thermal stability of the NR matrix. Compared with neat NR, the dielectric constant of nanocomposite increased by 11 times in the presence of rPGM conductive filler, and the leakage current generated by direct contact of fillers was reduced due to the attachment of MoS2 to the surface of rPGO; when 2% rPGM was added, the NR exhibited the highest tensile strength (21.3 MPa), elongation at break (495%), and abrasion resistance (0.165 cm−3); in addition, the thermal stability of the nanocomposite was also improved. These phenomena indicate that rPGM had great potential in conductive fillers and provided a reliable way for NR applications in the field of dielectric elastomers.  相似文献   

13.
《Ceramics International》2022,48(11):15483-15492
In this work, a new kind of double layers modified alumina-based hybrid (silver@copper@alumina (Ag@Cu@Al2O3) hybrid) was successfully synthesized through the two-step layer-by-layer process. First, copper (Cu) nanoparticles were assembled onto alumina (Al2O3) particles by reduction of Cu2+. Second, Ag@Cu@Al2O3 hybrids were assembled via Ag deposition on the surface of Cu@Al2O3 particles. The obtained Ag@Cu@Al2O3 hybrids served as thermally conductive fillers to greatly boost the thermal conductivity of poly (dimethylsiloxane) (PDMS). The thermal conductivity reached 1.465 W m?1 K?1 at 85 wt% filler loading. The thermal conductivity of PDMS matrix was increased more than 7 times by the addition of Ag@Cu@Al2O3 hybrid, which was much higher than single layer modified alumina-based hybrids (Ag@Al2O3 and Cu@Al2O3 hybrids) and virgin Al2O3 particle. The effect of double layers modified filler, single layer modified filler and virgin filler on the thermal conductivity of PDMS matrix was discussed in detail and the mechanism of these fillers for improving thermal conductivity was studied through Foygel's thermal conduction model. Otherwise, electric, mechanical and thermal properties of Ag@Cu@Al2O3/PDMS composites were also further tested and analyzed.  相似文献   

14.
《Ceramics International》2022,48(5):6116-6123
Dielectric polymer composites with conducting fillers would have great potential for diverse applications if their severe leakage loss could be addressed. In this regard, ternary composites using both ceramic and conducting materials as fillers might be an enabler for high dielectric constant and low dielectric loss. Herein, ternary composites with both Ti3C2Tx MXene conducting nanosheets and CaCu3Ti4O12 (CCTO) dielectric particles embedded in silicone rubber were studied. It was found that a ternary composite with 1.2 wt% (0.40 vol%) Ti3C2Tx MXene and 12 wt% (2.58 vol%) CCTO could provide an overall superior performance that include a high dielectric constant of 8.8, low dielectric loss of less than 0.0015, good thermal stability up to 450 °C, and excellent mechanical properties with tensile strength of 569 kPa, elastic module of 523 kPa and elongation at break of 333%. The outstanding performance is attributed to the improved uniform dispersion and good interfacial compatibility of mixed fillers in the polymer matrix, suggesting ternary composites might be a better option over their binary counterparts in preparing high performance dielectric composites.  相似文献   

15.
Poly(arylene ether nitriles) (PEN) containing various contents of graphene nanosheets (GNs) was prepared via solution‐casting method and investigated for their dielectric, mechanical, thermal, and rheological properties. For PEN/GNs nanocomposite with 5 wt % GNs, the dielectric constant was increased to 9.0 compared with that of neat PEN (3.1) and dielectric losses of all nanocomposites were in the range of 0.019–0.023 at 1 kHz. The tensile modulus and strength were increased about 6 and 14% with 0.5% GNs, respectively. The fracture surfaces of the all PEN/GNs nanocomposites revealed that GNs had good adhesion to PEN matrix. The thermal properties of the nanocomposites showed significant increase with increasing GN loading. For 5 wt % GNs‐reinforced PEN nanocomposite, the temperatures corresponding to a weight loss of 5 wt % (Td5%) and 30 wt % (Td30%) increased by about 20 and 13°C, respectively. Rheological properties of the PEN nanocomposites showed a sudden change with the GN fraction and the percolation threshold was about 1 wt % of GNs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Polyimide (PI) composites with mixed fillers of BN flakes and SiC whiskers exhibit enhanced thermal conductivity and mechanical properties. In order to improve dispersion and interaction of these mixed fillers within the PI matrix, BN flakes were modified by a titanate coupling agent while SiC whiskers were oxidized at 750°C for 60 minutes to produce SiC@SiO2 followed by silane coupling agent modification. PI composites reached a maximum thermal conductivity of 0.95 W/m K at volume fraction of mixed fillers of 27.6 vol% when the weight ratio of BN flakes to SiC@SiO2 whiskers was 1:4. The enhanced thermal conductivity is likely attributed to the formation of heat conductive networks constructed by BN flakes and SiC@SiO2 whiskers and the improved interfacial affinity between fillers and matrix. The optimized Nielsen-mold confirms the distribution and morphology of fillers affect the thermal conductivity of PI composites. In addition, SiC whiskers enhanced the mechanical property of PI composites and the influence of fillers on the mechanical property was further elaborated.  相似文献   

17.
High dielectric permittivity, good mechanical properties, and excellent thermal stability are highly desired for the dielectric materials used in the embedded capacitors and energy‐storage devices. This study reports polyimide (PI)/barium titanate (BaTiO3) nanocomposites fabricated from electrospun PI/BaTiO3 hybrid nanofibers. The PI/BaTiO3 nanocomposites were investigated using Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscope, thermal gravimetric analysis, an electromechanical testing machine, a LCR meter and an electric breakdown strength tester. The results showed that BaTiO3 fillers were uniformly dispersed up to 50 vol% in PI matrix. The dielectric permittivity of the composite (50 vol% BaTiO3) was 29.66 with a dielectric loss of 0.009 at 1 kHz and room temperature. The dielectric permittivity showed a very small dependence on temperature (up to 150°C) and frequency (100 Hz–100 kHz). The nanocomposites also showed high thermal stability and good mechanical properties. The PI/BaTiO3 nanocomposites will be a promising candidate for uses in embedded capacitors, especially in high temperature circumstance. POLYM. COMPOS., 37:794–801, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
The composites consisting of a biopolymer chitosan matrix and hybrid spinel/cellulose filler were prepared by solvent casting method whereas the spinel CoFe2O4 was obtained by mechanical synthesis followed by thermal annealing. Incorporation of cellulose to the spinel – chitosan composite significantly modified dielectric, magnetic and mechanical properties of a composite consisting of the biopolymer with hybrid filler. In dielectric response the presence of the filler in the chitosan matrix hindered the molecular motion. The lowering of the activation energy and the cooperativity of the motion was observed. According to the magnetic properties, addition of cellulose to the filler enhanced coercivity field Hc in comparison to the pure spinel powder from value 0.1453 to 0.2033?T. In mechanical properties incorporation of the filler resulted in improvement of Young's modulus and tensile strength in comparison to unfilled chitosan. For composites with nanocellulose filler tensile strength was over two times higher than for chitosan.  相似文献   

19.
In this work, we have investigated the synergistic effect of micro- and nano-Ta2O5 fillers in the epoxy matrix on the thermal, mechanical, and radioprotective properties of the composites. Morphological analysis revealed uniform dispersion of fillers in the matrix. Both the thermal stability and tensile properties of matrices have enhanced in the presence of fillers. Although the nanocomposites showed significantly higher tensile strength and Youngs modulus compared to micro-composites, the enhancement in these properties was predominant at low loadings. Dynamic mechanical analysis indicated good interfacial adhesion and positive reinforcing effect on the matrix even at higher loading (30 wt%) of nano-Ta2O5. γ-Ray attenuation studies performed in the energy range of 0.356–1.332 MeV revealed better γ-ray shielding ability of nanocomposites compared to microcomposites at same weight fraction of fillers. In particular, γ-ray attenuation at 0.356 MeV for 30 wt% nano-Ta2O5 loaded epoxy composite was enhanced by around 13% compared to the microcomposite at the same loading. Increased surface-to-volume ratio of nanofillers and consequent increase in matrix-filler adhesion and radiation-matter interaction have manifested in an overall enhancement in the thermal, mechanical, dynamic mechanical, and radiation shielding characteristics of nano-Ta2O5/epoxy composites, proving them as promising γ-ray shields.  相似文献   

20.
In this work, a multi-contact Al2O3@AgNPs hybrid thermal conductive filler was synthesized by in-situ growth method to fill high thermal conductivity polydimethylsiloxane (PDMS)-based composites to prepare TIMs. And the thermal conductivity, electrical conductivity, and mechanical properties of the composite materials were studied. During the synthesis process of the multi-contact hybrid filler, different concentrations of silver ions were reduced to generate silver nanoparticles and attached to the surface of Al2O3. Al2O3@AgNPs/PDMS thermally conductive composites were prepared by changing the filler addition. Using SEM, XPS, and XRD is used to characterize the morphology and chemical composition of Al2O3@AgNPs hybrid filler. The thermal conductivity of PDMS-based composites with different AgNPs content under 70 wt% filler loading was studied. The results show that the thermal conductivity of PDMS-based composites filled with 7owt%Al2O3@3AgNPs/PDMS multi-contact hybrid filler is 0.67 W/m·K, which is 3.72 times that of pure PDMS, and is higher than that of unmodified Al2O3 with the same addition amount. /PDMS composite material has a high thermal conductivity of 24%. This work provides a new idea for the design and manufacture of high thermal conductivity hybrid fillers for TIMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号