首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A new type of transparent scratch resistant coatings including in-situ modified SiO_2(g-SiO_2) in flame spray pyrolysis(FSP) process was prepared. The maximum content of g-SiO_2 in the coating was 15 wt%, which is higher than that of SiO_2 modified by traditional wet chemical route(l-SiO_2, only 10 wt%). The results of transmission electron microscopy have demonstrated that in-situ surface modified g-SiO_2 particles dispersed well with smaller agglomerates in the final coating, which was much better than the particles modified via wet chemical route. Visible light transmittance and haze tests were introduced to characterize the optical quality of the films. All coatings were highly transparent with the visible light transmittance of above 80%, especially for coatings containing g-SiO_2, which exhibited slightly higher visible light transmittance than l-SiO_2 embedded one. The haze value of coatings incorporated with 15wt% g-SiO_2 was 1.85%, even lower than the coating with 5 wt% l-SiO_2(haze value of 2.09%), indicating much better clarity of g-SiO_2. The excellent optical property of g-SiO_2 filled coatings was attributed to the good dispersion and distribution of particles. Nano-indention and nano-scratch tests were conducted to investigate the scratch resistance of coatings on nano-scale. The surface hardness of the coatings rose by 18% and 14%, and the average friction coefficient decreased by 15% and 11%, respectively, compared to the neat coat due to the addition of 10 wt% g-SiO_2 and l-SiO_2. The pencil hardness of the coating with 15 wt% g-SiO_2 increased from 2B for the neat coating to 2H. However, the pencil hardness of coating with 10 wt% l-SiO_2 was only H. The results showed that the g-SiO_2 embedded coatings exhibited higher scratch resistance and better optical properties.  相似文献   

2.
In this study, nanocomposite powder consisting of zirconia and titania (Zr–Ti) have been synthesised by sol–gel method, with the aim of protecting Ti‐6Al‐4V surface. A simple and low cost electrophoretic deposition (EPD) technique has been employed for coating the nanocomposite material on Ti‐6Al‐4V. The prepared nanocomposite powder was characterised for its functional groups, phase purity, surface topography by Fourier transform infrared spectroscopy, powder X‐ray diffraction and scanning electron microscopy. Further, the biocompatibility nature of the composite powder was studied by [3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] colorimetric assay and fluorescence analysis with MG63 osteoblast cell lines. The electrochemical behaviour of composite coating was investigated by potentiodynamic polarization and electrochemical impedance method. The results obtained from the electrochemical techniques indicate more corrosion resistance behaviour with increase of R ct value with the corresponding decrease in R dl values. From the above findings, the composite coating acts as a barrier layer against corrosion by preventing the leaching of metal ions from a dense and defect free coating. A scratch test analyser was used to assess the integrity of the coating; the lower traction force value of composite coating with increase in load has confirmed the presence of thick adherent layer on the substrate.Inspec keywords: zirconium compounds, titanium compounds, titanium alloys, aluminium alloys, vanadium alloys, nanofabrication, nanocomposites, nanoparticles, sol‐gel processing, electrophoretic coating techniques, surface topography, Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, fluorescence, cellular biophysics, biomedical materials, electrochemical impedance spectroscopy, corrosion resistance, corrosion protection, corrosion protective coatings, adhesionOther keywords: in‐situ fabrication, zirconium‐titanium nanocomposite powder, biomedical applications, zirconia, titania, sol‐gel method, electrophoretic deposition, EPD, functional groups, phase purity, surface topography, Fourier transform infrared spectroscopy, powder X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, biocompatibility, 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide colorimetric assay, acridine range fluorescence analysis, MG63 osteoblast cell lines, electrochemical behaviour, composite coating, potentiodynamic polarization, electrochemical impedance spectroscopy, corrosion resistance, barrier layer, leaching, defect free coating layer, scratch test analysis, adherent layer, TiAlV‐ZrO2 ‐TiO2   相似文献   

3.
The incorporation of particles of monoclinic zirconia into coatings formed on magnesium by plasma electrolytic oxidation has been examined in order to investigate the mechanism of coating formation. The coatings, developed under DC conditions in alkaline silicate and phosphate electrolytes, comprised two main layers and contained MgO, Mg2SiO4, and Mg3(PO4)2 phases. Zirconia particles were incorporated preferentially into the inner layer regions and at the coating surface. Zirconium was also redistributed in the outer layer coating material, sometimes resulting in a modified microstructure. Due to local heating at the microdischarge sites, particles underwent transformation from monoclinic to tetragonal zirconia, although monoclinic zirconia was also present in the final coating. Mg2Zr5O12 was also formed in the coating produced in phosphate electrolyte. The findings suggest that the outer coating material forms at the inner/outer coating interface region and the coating surface, with transport of particles to the former region through short-circuit paths in the outer layer.  相似文献   

4.
The microwave heating sodium silicate bonded sand (SSBS) process is regarded as the most likely molding sand to realize green casting, owing to its low sodium silicate addition, rapid hardening speed, high strength, and excellent collapsibility. However, SSBS can absorb water easily in the air at room temperature. A surface coating strengthening method was used to improve the humidity resistance of SSBS. The properties of SSBS treated by the surface coating strengthening method were compared with that without any treatment. The experimental results indicated that humidity resistance had been improved greatly using the surface coating strengthening method, and comparing to SSBS without any treatment, the compressive strength (σ6h) of the treated SSBS increased 2.32 times and the moisture absorption rate (w6h) can be decreased by 45%. The morphology results revealed that there was a surface coating around the treated SSBS. The linear scanning indicated that the nonhygroscopic coat components presented on the boundary of the treated SSBS, and the surface phase analysis manifested that the boundary of the treated SSBS emerged new three phases, including Al2TiO5, PbTiO3, and NaAlO2, which reduced the free sodium ion content and improved the humidity resistance of SSBS.  相似文献   

5.
There is an increasing industrial demand for metal alloys with high wear resistance under severe operating conditions. Ni-based alloys, such as Inconel superalloys, are an excellent option for these applications; however, their use is limited by their high cost. Ni-based coatings deposited onto carbon steel substrates are being developed to achieve desired surface properties with reduced cost. Laser cladding deposition has emerged as an excellent method for processing Ni based coatings. In this work, microstructure, mechanical properties and local wear behaviour have been investigated in response to the addition of Cr3C2 ceramic particles into an Inconel 625 alloy deposited onto a ferritic steel substrate by laser cladding. Using this deposition technique, a homogeneous distribution of Cr3C2 particles was observed in the coating microstructure. The addition of ceramic particles to the starting powder resulted in the formation of hard precipitates in the coating microstructure. The partial dissolution of Cr3C2 particles during the laser cladding process increased the hardness of the Inconel 625 matrix. Depth sensing indentation and scratch tests were performed to study the local wear behaviour and scratch resistance of the cermet matrix compared with the conventional Inconel 625 alloy. Finally, the effect of Cr3C2 on mechanical properties was correlated with the observed microstructure modifications.  相似文献   

6.
Three-dimensional (3D) SiO2 has been prepared by coating silica on the surface of a template polymer and a sequent calcination of the silica/polymer composite. The template polymer that has 3D skeletal structure was prepared by curing epoxy resin in polyethylene glycol mediums using diethylenetriamine as a curing agent. The coating of silica on the polymer surface was accomplished through a slow in situ hydrolysis of infiltrated ethyl silicate in the interconnected pore network of the template polymer. The thickness of silica layer was controlled in a range of 20-80 nm by changing the total amount of ethyl silicate in hydrolysis. The 3D structures of silica were characterized by scanning electronic microscopy, transmitting electronic microscopy, Fourier transform infrared spectroscopy and surface area measurement. The light scattering of the 3D silica filled with liquid medium can be minimized by tuning the refractive index of the liquid medium to be the same as that of amorphous silica in the 3D structure.  相似文献   

7.
Surface coating operations have an important place in metal technologies. The aim of surface coating operations is to improve and enhance the inferior properties of a surface through its modification. In this study, low-carbon AISI 1015 steel was coated with cobalt-base alloy Stellite 6 welding wire by microlaser welding. After coating, the microstructures of the coated surface cross-sections were examined. The microstructure, hardness and wear resistance of the surface-alloyed layer were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis, and Vickers hardness (HV0.1) and pin-on-disk tests. The chrome and cobalt diffusion from the Stellite coating alloy to the AISI 1015 steel was examined by means of the line analysis method and element mapping analyses. The results obtained from the tests were interpreted and supported by comparison with tests conducted in similar studies reported in the literature.  相似文献   

8.
Abstract

Effect of rare earth (RE) metals addition on the microstructure, formation of Fe–Zn intermetallics and corrosion resistance of the batch galvanising Zn–0·18Al coating were studied. Microstructure of the coating was observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Salt spray test and surface potential measurement were employed for corrosion resistance determination. The results show that the addition of RE can improve bath liquidity, refine surface spangles, stabilise the Fe2Al5 inhibition layer, decrease coating thickness and enhance corrosion resistance of the coating. However, corrosion resistance of the coating did not increase continuously with increasing RE content and the optimum RE content lies between 0·045 and 0·069% in the experiment. Mechanism of RE on the corrosion resistance of the galvanised coating was briefly analysed.  相似文献   

9.
超疏水涂层在实际应用中受化学腐蚀、刮擦磨损等外界环境的影响,易造成涂层老化、开裂甚至脱落,造成涂层失效。因此,针对这一问题,设计出具备耐候性的自修复超疏水表面:以超支化聚二甲基硅氧烷为柔性基底和低表面能物质,引入纳米二氧化硅构筑表面粗糙结构,制备超疏水涂层。当SiO2粒径为50 nm、固含量为30wt%时,得到了接触角为154.87°的超疏水涂层。经过5次胶带剥离试验,涂层表现出良好的机械稳定性。经历10次温差循环试验和24 h紫外光照射后,涂层表面接触角仍大于150°,表明涂层具有良好的耐候性。涂层经过80℃、2 h的热处理可修复划痕,表明该涂层具有一定的自修复功能。同时,Tafel及Nyquist测试结果表明,对基底进行超疏水处理可显著提高防腐性能,并且该涂层具有明显的自清洁效果。综上所述,本文所制备的纳米SiO2@超支化聚二甲基硅氧烷(PDMS)复合超疏水涂层具有自修复功能,为自修复超疏水涂层的开发提供了新的研究策略。  相似文献   

10.
Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO2 double layers coating was successfully conducted on F-136 Ti–6Al–4V implant alloy in ZrO2(NO3)2 aqueous solution and subsequently in the mixed solution of Ca(NO3)2 and NH4H2PO4. After annealing at 400 °C, 500 °C and 600 °C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO2, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO2 double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.  相似文献   

11.
The thin hard coating deposition techniques CVD and PVD have been used for a long time in industry. Such coatings prove very effective in improving the tribological and corrosive resistant properties of the substrate. It was shown that the compressive residual stresses are introduced on the surface layer from the PVD deposition process that helps to increase the fatigue limit of coated structural components. The aim of this work is to evaluate the effect of a SiOx coating, deposited by means of PECVD technique, on the fatigue resistance of a quenched and tempered alloy steel (39NiCrMo3). Rotating bending fatigue tests were carried out to assess its fatigue limit and characterize any possible variation between the coated and the uncoated material. Fracture surface observations were made using SEM on fracture surfaces, and scratch tests were performed on samples to assess the coating-substrate interface delamination.  相似文献   

12.
热镀锌(HDG)钢片经SiO2∶Na2O摩尔比为1.00和3.50的硅酸钠溶液中处理后,在其表面获得硅酸盐转化膜。用中性盐雾(NSS)试验、塔菲尔极化和电化学阻抗谱(EIS)研究了硅酸盐膜试样的耐蚀性,将被刀片划伤的硅酸盐膜试样进行NSS腐蚀后,用扫描电镜(SEM)和能谱仪(EDS)观察和分析了划痕处的腐蚀,以探讨硅酸盐膜的自愈性。结果表明:在较高SiO2∶Na2O摩尔比溶液中获得的硅酸盐转化膜具有较好的耐蚀性和自愈性,腐蚀过程中硅酸负离子从膜层中迁移划痕处形成新的保护膜(由Zn,O和Si组成)抑制了划痕处锌的腐蚀。AFM观察发现,在摩尔比为3.50中获得的试样的膜层表面更加致密,这有利于阻止腐蚀介质的侵入和提供充裕的硅酸负离子迁移。并对硅酸盐转化膜试样的划痕的腐蚀过程的细节进行了分析和讨论。  相似文献   

13.
J.L. Xu  F.P. Wang  L.C. Zhao 《Materials Letters》2008,62(25):4112-4114
Al2O3 coatings were prepared on NiTi alloy by micro-arc oxidation in an aluminate solution. Thin-film X-ray diffraction (TF-XRD) indicated that the coating consisted of only Al2O3 crystal phase. Energy dispersive X-ray spectrometer (EDS) showed that there was about 2.53 at.% Ni in the surface layer, which was greatly lower than that of NiTi substrate. Scanning electron microscopy (SEM) showed that the coating exhibited a typical porous surface and excellent adhesive interface between the coating and the substrate. Direct pull-off test showed that the coating had a mean coating-substrate bonding strength of 28 ± 2 MPa. The results of electrochemical impedance spectroscopy (EIS) study and potentiodynamic polarization test indicated that the corrosion resistance of the coated sample was increased by two orders of magnitude compared with uncoated sample.  相似文献   

14.
Formation of multi-layer coating by plasma nitriding and hard chromium electroplating on the surface of H11 hot work tool steel was investigated. Specimens were coated via a triple process containing plasma nitriding, hard chromium electroplating and plasma nitriding. Surface composition has been studied by X-ray diffraction analysis. The surface morphology and elemental analysis was examined by using scanning electron microscopy. Wear tests were conducted by the use of pin-on-disk method, a cemented tungsten carbide pin and 1000 gF load. Polarization corrosion tests were carried out in distilled water solution containing 3% NaCl. The improvement in hardness distribution after third step is discussed in considering the forward and backward diffusion of nitrogen in the chromium interlayer. Also, the formed phases in the hybrid coating were determined to be CrN + Cr2N + Cr + Fe2-3N + Fe4N. Wear results showed that although the multi-layer coated specimens have higher wear resistance in comparison with the reference specimen, their wear resistance is less than that of two and one layer coated specimens due to micro-ploughing and removal of hard surface nitrides from the surface. By increasing the third step time and temperature, the wear resistance of specimens increases due to higher diffusion of nitrogen in the chromium layer. But polarization results showed that triple coated specimens have the lowest corrosion rate.  相似文献   

15.
In this paper, we report on a series of experiments designed to study the influence of plasma nitriding on the mechanical properties and the corrosion resistance of austenitic stainless steel. Plasma nitriding experiments were conducted on AISI 304L steel in a temperature range of 375‐475°C using pulsed‐DC plasma with different N 2‐H 2 gas mixtures and treatment times. First of all, the formation and the microstructure of the modified layer will be highlighted followed by the results of hardness measurement, adhesion testing, wear resistance and fatigue life tests. In addition the corrosion resistance of the modified layer is described. The microhardness after plasma nitriding is increased by a factor of five compared to the untreated material. The adhesion is examined by Rockwell indentation and scratch test. No delamination of the treated layer could be observed. The wear rate after plasma nitriding is significantly reduced compared to the untreated material. Plasma nitriding produces compressive stress within the modified layer. This treatment improves the fatigue life which can be raised by a factor of ten at a low stress level. The results show that plasma nitriding of austenitic stainless steel is a suitable process for improving the mechanical and the technological properties without significantly effecting the excellent corrosion resistance of this material.  相似文献   

16.
The surface scratch resistance, damage evolution and damage detection during microscratching of pure AlN and AlN with an Al2O3 oxide layer (∼0.1 μm) were investigated. The microscratch experiments were performed in a progressive load-ramped mode where the load was linearly increased from 0 to 3 N as the scratch progressed with a loading rate of 0.2 N/min. The experiments resulted to two different failure mechanisms; Ductile scratching and fracture dominated scratching. In the case of pure AlN, inconsistent different kinds of damages were found to initiate at low critical load measured as 0.30 N. This critical load was also found to decrease with increasing the surface roughness, material density and grain size of AlN. In the case of pure AlN with an Al2O3 oxide layer, the critical load for crack initiation was measured as 0.45 N, higher than pure AlN. This critical load was found to generate uniform discontinuous chipping. The distance between these defects decreased and the failure mode gradually transformed to continuous chipping as the scratch progressed. The surface modification of AlN with the use of an Al2O3 oxide layer was found to improve the tribological properties of AlN.  相似文献   

17.
Electroless nickel–boron coatings, synthesized on mild steel, were submitted to nitridation treatments in varying conditions of pressure, temperature and atmosphere composition. One treatment was carried out under a reduced pressure of a nitrogen-based gas, the other under ambient pressure in a ammonia-based atmosphere.The modifications of the samples’ chemistry after those treatments were investigated by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy), GD-OES (Glow Discharge-Optical Emission Spectroscopy) and ToF-SIMS (Time of flight-Secondary Ions Mass Spectroscopy) analysis. Their structures and morphology were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy. The mechanical properties of the samples were investigated by micro- and nanohardness measurements successively on the free surface of the sample and on polished cross-sections; their roughness and resistance to scratch test were measured. Electrochemical corrosion tests were also carried out.The effects of both treatments were then compared: after the treatment carried out under lowered pressure, the coatings are dense, present signs of solution hardening and are characterized by a high hardness (close to 1600 hv100). A combination layer is observable on the samples treated under an ammonia-based atmosphere. This outer layer possesses poorer mechanical properties but the inner layer of the coating presents properties similar to those of vacuum nitrided coatings. The corrosion resistance of the coatings is as good as that of heat treated coatings.  相似文献   

18.
Abstract

Ni aluminide diffusion coatings on the surface of γ-TiAl alloy were produced by electroplating a Ni layer followed by a single step high activity aluminising carried out in Ar+H2 atmosphere with a mixture of Al, NH4Cl and Al2O3 powders at 1000°C for 5 h. The effect of initial thickness for Ni layer on microstructure of produced Ni aluminide coating was highlighted. The thickness of initial Ni layer was changed to 4–20 μm. In the case of the Ni layer with thickness of 4 μm, only a little amount of NiAl phase was formed in a TiAl3 matrix. However, the microstructure of coating, in the case of the Ni layer with thickness of 8 μm, consisted of an outer layer of two phases (NiAl+TiAl3), an intermediate layer of TiAl3 and an interdiffusion layer. For thicker initial Ni layers (16 and 20 μm), beside the latter coating microstructure, a continuous surface layer of NiAl phase was observed. Isothermal oxidation tests on these aluminide coatings reveal that the oxidation resistance of the aluminide coatings increases with increase in initial thickness of Ni layer.  相似文献   

19.
Abstract

Intermetallic compounds of TiAl were aluminised by pack cementation in the temperature range 700–900°C with a powder mixture of aluminium, NH4Cl, and Al203 under a flow of argon gas. The coating products and oxidised products formed on the TiAl substrate were investigated by optical microscopy, X-ray diffraction, and scanning electron microscopy. Single layers of TiAl3 were formed on the substrate of all the aluminised specimens. Through thickness cracks and pores were often observed inside the coating layers. High quality coating layers (7sim;30 μm) containing a very small amount of microcracks and pores were obtained by a treatment of 800°C for 3 h. The average surface hardness of the aluminised specimens (~1010 HV(25 mg)) was much higher than that of the TiAl (~396 HV (25 mg)), thus improving the wear resistance. In particular, the aluminising significantly improved the high temperature oxidation resistance. After the high temperature oxidation tests, four sublayers, i.e. α-Al203, TiAl2, TiAl with a high aluminium content, and TiAl with a low aluminium content, from the surface, were formed on the substrate. These four sub layers contributed to a significant improvement in the high temperature oxidation resistance.  相似文献   

20.
钛合金表面阳极微弧等离子体渗硼层的研究   总被引:1,自引:0,他引:1  
缪倩倩  陈海燕  顾伟  蒋永锋  宋亓宁 《材料导报》2018,32(18):3161-3165
采用阳极微弧等离子体技术研究了钛合金表面渗硼层的微观组织和性能。通过光学显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)表征分析了渗硼层的表面和截面的微观组织、形貌、相结构、渗层元素分布。借助摩擦磨损试验机测试了渗硼层的耐磨性,运用电化学工作站对渗硼后的TC4材料进行了耐腐蚀性测试。结果表明,钛合金表面阳极微弧等离子体渗硼技术制备的渗硼层连续致密。渗硼层主要由金属间化合物TiB2和TiB组成,其与氧化层共同作用,能显著提高钛合金表面的耐磨性。渗硼后的TC4钛合金耐腐蚀性较基体有所降低。表面阳极微弧等离子体技术是一种新型的钛合金表面改性方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号