首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
采用金相显微镜、扫描电镜、X射线衍射仪、能谱分析仪、导电仪和硬度计,研究了不同热处理工艺对Cu-0.6Cr-0.15Zr-0.12Fe-0.06P合金组织和性能的影响。结果表明:固溶处理后合金电导率、硬度均有所下降;时效处理后,合金电导率快速上升;硬度随时效时间的延长,先升后降;时效温度提高,达到时效硬化峰值的时间就越短,电导率上升的也越快。合金经980℃×2 h+500℃×3 h处理后,电导率可达44.2 MS·m~(-1),硬度可达154.76 HV0.2,软化温度达到603℃。合金析出相主要成分是以Cr为主的(Cr Zr Fe P)化合物和(Cr Zr P)化合物。试验对比了980℃×2 h固溶后时效和未经固溶直接时效两种工艺,发现合金电导率相差不大,但经过固溶处理后合金析出相颗粒分布更均匀,硬度峰值升高18 HV0.2。  相似文献   

2.
以Cu-Cr-Zr合金为基体,向其中添加Ni和Si,制备了Cu-Cr-Zr-Ni-Si合金,研究了固溶+时效处理对该合金的导电性能和显微硬度的影响。结果发现,随着固溶温度升高,Cu-0.6Cr-0.15Zr-2.8Ni-0.9Si合金的硬度(HV)快速下降,最低为95,电导率小幅降低,维持在9.28~10.44 MS/m之间,时效后合金电导率和硬度有较大提升。合金经960℃×2h固溶+550℃×1h时效,电导率为20.30 MS/m,硬度(HV)为273。  相似文献   

3.
研究了时效温度、时间和冷变形后时效对Cu-Ni-Si-Cr-P合金微观组织和性能的影响。结果表明,合金经900℃固溶处理后,在500℃×2h时效时合金电导率和硬度(HV)分别达到21.87 MS/m和234.5。变形量为60%的Cu-Ni-SiCr-P合金经450℃×1h时效可获得良好的综合性能,其电导率达到20.07MS/m,硬度(HV)达到255.3。对Cu-Ni-Si-CrP合金450℃时效试样进行显微分析,发现了细小弥散的Ni2Si和Ni3P析出物。  相似文献   

4.
向Cu-Cr-Zr合金中添加Ni、Si、B元素制备Cu-Cr-Zr-Ni-Si-B合金,研究热处理对Cu-0.6Cr-0.15Zr-2.8Ni-0.7Si-0.06B合金显微组织、电导率和硬度的影响。结果表明:合金铸态组织为粗大的柱状晶,基体内部弥散分布着大量粗大过剩相;固溶处理后,过剩相基本溶解,晶粒明显长大;时效析出颗粒主要有Ni2Si、CrSi2、Cr3B4等化合物。随固溶温度的升高,合金硬度及电导率均快速下降,最低达到105.10 HV0.2、18.77%IACS。时效处理后,合金电导率、硬度都有大幅提升。经960 ℃×2 h固溶+550 ℃×1 h时效后,硬度达到256.32 HV0.2,导电率达到39.7%IACS,软化温度达到575 ℃。  相似文献   

5.
采用金相显微镜、扫描电镜、硬度计和电子拉伸机等研究了不同温度、不同时间的固溶和时效热处理对Mg-Y-NdGd-Zr合金组织和性能的影响。结果表明,随着固溶处理温度升高和时间延长,Mg-Y-Nd-Gd-Zr镁合金晶内化合物减少,晶粒尺寸增大,520℃×8 h的固溶处理工艺最佳。时效时,弥散细小的化合物均匀析出,随着温度升高和时间延长,析出相数量越来越多,合金的组织和力学性能得到进一步改善。经520℃×8 h固溶处理再进行225℃×16 h时效处理后,合金抗拉强度可达到272 MPa,硬度(HV)值达到78左右。  相似文献   

6.
采用金相显微镜、扫描电镜、能谱仪、X射线衍射仪等测试手段,研究了热处理对Cu-0.8Cr-0.15Zr-2.8Co-0.7Si-0.1RE合金显微组织、电导率和硬度的影响。结果表明,合金铸态组织为粗大的等轴晶,基体分布着大量Co_5Cr_3Si_2相和Co、Si组成的灰色析出相;固溶处理后,晶粒明显长大,灰色析出相完全溶解,Co_5Cr_3Si_2相并未溶解;时效处理后,析出相主要有Co_5Cr_3Si_2、Co_2Si等。随固溶温度升高,合金电导率快速下降,硬度快速上升。时效处理后,合金电导率、硬度值都有大幅提高。经980℃×2h固溶+450℃×10h时效后,硬度(HV)达到218.9,电导率达到28.54 MS/m,软化温度达到686℃。  相似文献   

7.
采用金相显微镜、扫描电镜和硬度测试等手段,研究了固溶和时效热处理对Mg-Nd-Zr合金组织和性能的影响。结果表明,合金经460~520℃固溶处理后,随着固溶温度的升高和保温时间的延长,铸态组织中晶界上的化合物逐渐溶解,当固溶温度过高和保温时间过长时,晶粒长大。合金经490℃×8h固溶处理后时效,随着时效时间的延长,固溶时残留的第二相逐渐溶解,均匀析出第二相,合金硬度逐渐增大,达到峰值后进入过时效阶段,析出的第二相变大,硬度值下降。Mg-Nd-Zr合金的最佳热处理工艺为经490℃×8h固溶处理后,进行225℃×4h时效。  相似文献   

8.
采用大气熔炼工艺制备了Cu-Ni-Si合金,研究了时效前后同溶温度对集成电路引线框架用Cu-Ni-Si合金显微硬度和电导率的影响,并且分析了在800℃固溶后时效对Cu-Ni-Si合金性能的影响.结果表明:时效前随同溶温度的升高,材料的显微硬度和电导率均是首先较快下降,之后义略有回升:Cu-Ni-Si合金经800℃固溶及450℃×8h时效后,合金得到了良好综合性能,其显微硬度达到241 HV,电导率达到42.5%IACS.  相似文献   

9.
研究了时效及冷变形后时效对Cu-Ni-Si-Cr合金微观组织和性能的影响。结果表明,固溶处理后,合金在500℃时效4h可以获得良好的综合性能,电导率和硬度(HV)分别达到22.34MS/m和220.1。变形量为80%的Cu-Ni-Si-Cr合金在450℃时效2h获得良好的综合性能,电导率和硬度(HV)分别为22.50 MS/m和267.5。对Cu-Ni-Si-Cr合金时效试样进行显微分析,其析出相呈细小弥散分布,经选区电子衍射分析发现析出相为Ni2Si,同时发现Cr单质存在。  相似文献   

10.
Cu-Ag-Cr合金时效特性的研究   总被引:3,自引:0,他引:3  
研究了时效参数和变形量对Cu-0.1Ag-0.46Cr合金性能的影响.结果表明:合金经940℃×20min固溶后,在520℃时效1h可获得较高的电导率和硬度.时效前对合金加以冷变形可以显著提高其显微硬度,合金经60%变形后在480℃时效30min时,峰值硬度可达146.71HV,电导率可达52.9MS/m,而固溶后直接时效分别仅为123.59HV和46MS/m.而合金固溶后淬入650℃碱浴中保温20s可使合金的显微硬度和电导率均有所提高.  相似文献   

11.
时效对Cu-2.0Ni-0.5Si合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了时效温度和时效时间对不同冷变形条件下Cu 2.0Ni 0.5Si合金组织和性能的影响.结果表明,合金经900 ℃固溶,在经不同冷变形后时效,第二相呈弥散分布,当变形量为80%,时效温度为500 ℃,时效时间为1 h时,其显微硬度HV达到250,电导率达到22.625 MS/m,与未经过预冷变形的合金时效相比,合金能获得较高的显微硬度与电导率.时效前的预冷变形能够有力的促进合金在时效过程中第二相的析出,从而提高合金的显微硬度和电导率.合金经40%预冷变形,450 ℃×4 h时效后,其抗拉强度达到620 MPa.拉伸试样断口表现出明显的塑性断裂特征.  相似文献   

12.
采用金相显微镜、扫描电镜、能谱仪以及维氏硬度计等,研究了时效热处理工艺对Mg-Gd-Y-Nd-Zr合金的组织和性能的影响。结果表明,时效热处理能够明显改善Mg-Gd-Y-Nd-Zr镁合金的组织和力学性能,时效时合金晶粒内部析出细小弥散的化合物,随着时效温度升高,硬度升高,但是时效温度过高或时间过长会出现过时效现象,导致硬度降低。固溶处理后的最佳时效热处理工艺为200℃×16h,合金的硬度值(HV)达到73.38。  相似文献   

13.
时效与形变对Cu-Cr-Zr合金性能的影响   总被引:10,自引:3,他引:10  
研究了时效参数和变形量对Cu 0 .3Cr 0 .0 48Zr合金组织和性能的影响。结果表明 :合金经 92 0℃× 1h固溶后 ,在 5 5 0℃时效可获得较高的电导率 ,在 5 0 0℃时效可获得较高的显微硬度。时效前加以冷变形可以加速时效初期第二相的析出 ,使合金的性能以较快的幅度上升 ,合金经 60 %变形后 5 0 0℃时效 0 .5h时 ,电导率和显微硬度分别可达 45 .96MS/m和14 2 .2HV ,而固溶后直接时效仅为 3 3 .95MS/m和 99.7HV。  相似文献   

14.
研究了热处理对Cu-3.0Ni-0.75Si-0.3Co合金电导率、硬度和组织演变规律的影响,并探讨了合金的强化机理。结果表明,随固溶温度升高,合金的晶界和晶内的Ni3Si2和CoSi相粒子数量逐渐减少,合金的过饱和固溶度不断增大。在950℃×1h固溶后,由于第二相粒子的尺寸较小、数量很少,在扫描电镜图片中出现的第二相粒子未能在XRD图谱中发现,说明在950℃×1h固溶处理后溶质元素能较为充分溶于基体中。经950℃×1h固溶处理和60%的冷变形后,电导率随时效时间的延长而升高,之后趋于平稳。随着时效温度的升高,电导率也不断提高;硬度随时效时间的延长先升高,后降低;时效温度越高,到达峰值所需的时间越短。在950℃×1h固溶处理,经60%的冷变形,450℃×6h时效处理后,合金的综合性能较好,此时,合金硬度(HB)为257,电导率为20.18 MS/m。  相似文献   

15.
采用金相、硬度、电导率、剥落腐蚀、电化学腐蚀以及透射电镜(TEM)观察等分析测试方法研究焊后热处理对Al-Zn-Mg合金组织与性能的影响。结果表明:Al-Zn-Mg合金焊接接头固溶区的硬度和耐腐蚀性能随焊后热处理时效时间的延长和温度的提高而提升。自然时效4 d+(130℃,24 h)和自然时效150 d+(150℃,2 h)两种焊后热处理工艺较佳:经自然时效4 d+(130℃,24 h)处理后,合金固溶区最大硬度由82.5HV提高至123HV,最大电导率由34%IACS提高至35.8%IACS,剥蚀等级提升至EA;经自然时效150 d+(150℃,2 h)处理后,合金固溶区最大硬度提高至110HV,最大电导率至34.7%IACS,剥蚀等级提升至N。合金焊接接头固溶区硬度与耐腐蚀性能提升的主要原因是焊后时效热处理促进焊接固溶区晶内析出相粗化,弥散分布,且晶界析出相呈不连续分布状。  相似文献   

16.
热变形后时效工艺对Cu-0.92Cr合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用热变形+固溶+热变形+冷变形+时效工艺制备了Cu-0.92Cr合金试样,测试了试样的硬度和电导率,并进行了微观组织观察,研究了热变形后时效工艺对Cu-0.92Cr合金组织和性能的影响.结果表明,在试验参数范围内,随着时效温度的升高和时间的延长,合金的硬度逐渐下降,电导率升高.在420 ℃×6 h时效后,合金硬度(HB)为130.3,电导率可达52.49 MS/m.组织观察表明,经时效后析出相为具有面心立方结构、晶格参数为0.424 nm的化合物,颗粒大小约为4~15 nm,颗粒间距为10~30 nm.  相似文献   

17.
研究了时效温度、时效时间对快速凝固Cu-Cr-Sn-Zn合金微观组织、显微硬度和电导率的影响规律.结果表明,快速凝固状态下合金细晶强化作用显著,硬度(HV)和电导率分别为100和20.9 MS/m.合金快速凝固时效后的析出相Cr弥散、稠密,使合金强度和电导率得以提高,在500℃×15 min时效后,硬度(HV)为170,电导率达37.1 MS/m.  相似文献   

18.
对Cu-2.32Ni-0.57Si-0.05P合金经不同程度的变形和不同工艺时效处理后的显微硬度、电导率和抗拉强度进行了测试,在TEM、SEM下对合金析出相进行了观察和分析.结果表明,形变和时效综合作用能显著提高该合金的综合性能.该合金经900 ℃×1 h固溶处理、经不同预冷变形后,在450 ℃时效可获得良好的综合性能.当变形量为80%,在450 ℃下时效1 h,其显微硬度和电导率分别可达HV 240和23.78 MS/m;当变形量为40%,在450 ℃下时效1 h,其抗拉强度达到568 MPa.时效过程中的析出相为δ-Ni2Si相,颗粒细小、呈弥散分布,且随时效时间的延长逐渐长大.  相似文献   

19.
研究了热处理工艺对6061铝合金硬度和电导率的影响。结果表明:固溶处理过程中,随着固溶时间的增加,合金硬度先降低后升高,后又逐渐降低,随着固溶温度的增加,显微硬度值逐渐增大;时效过程中,硬度值随时效时间增加先升高后降低,电导率随时效时间增加逐渐升高并趋于稳定;6061铝合金最佳的热处理制度为540℃固溶4 h+173℃时效11 h,此时合金的硬度值为119.74 HV6,电导率为56%·IACS;对合金电导率影响最大的参数是固溶温度和时效时间,对硬度值影响最大的参数是时效时间。  相似文献   

20.
热处理对Mg-5wt%Sn合金组织与显微硬度的影响   总被引:1,自引:0,他引:1  
研究了固溶处理(460-500 ℃保温1-96 h)加人工时效处理(210-290 ℃保温1-160 h)对Mg-5wt%Sn合金组织演变的影响及组织与显微硬度之间的关系.结果表明,经480℃过固溶处理后,合金中的Mg2Sn相基本溶解,随后的时效处理过程中Mg2Sn相以弥散形式析出.Mg-5wt%Sn合金具有明显的时效硬化特征:经480℃固溶处理后,时效温度采用210℃时,保温96h后显微硬度达到峰值为77.4 HV0.01;时效温度为250℃时,保温16h后显微硬度达到峰值为76.6 HV0.01;时效温度采用290℃时,保温4h后达到峰值为60.2 HV0.01.合适的时效处理制度能明显提高合金的显微硬度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号